
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

DEPARTMENT OF ENGINEERING SCIENCE AND MECHANICS

DYNAMICS OF A GRAVITY-GRADIENT STABILIZED

FLEXIBLE SPACECRAFT

Final Technical Report
NASA Research Grant NGR 47-004-098

(The Stability of Motion of Satellites with
Long Flexible Appendages)

March 1974

(NASA-CR-13 8 15 3 ) THE STABILITY OF MOTION N74-22497

SATELLITES WITH LONG FLEXIBLE APPENDAGES

Final Technical Report (Virginia

,Polytechnic Inst. and State Univ.) Unclas

-1-4t p HC $8.25 CSCL 22B G3/31 37057

Principal Investigator: Leonard Meirovitch
Professor

Research Assistant: Jer-Nan Juang
Graduate Research Assistant



Acknowledgment

This is to express sincere appreciation to NASA, Goddard Space

Flight Center for making this study possible. Special thanks are due to

Dr. Joseph V. Fedor, the grant monitor, for his many valuable suggestions

during the course of this investigation.

/



Abstract

This investigation is concerned with the dynamics of a gravity-

gradient stabilized flexible satellite in the neighborhood of a deformed

equilibrium configuration. First the equilibrium configuration is deter-

mined by solving a set of nonlinear differential equations. Then stability

of motion about the deformed equilibrium is tested by means of the

Liapunov direct method and the natural frequencies of oscillation of the

complete structure calculated. The analysis is applicable to the RAE/B

satellite.
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1. Introduction

With the advent of large spacecraft, flexibility has become an in-

creasingly important factor in the system attitude stability. Early de-

signs of spacecraft were based on rigid body analysis, according to which

rotational motion is stable if it takes place about the axis of maximum or

minimum moment of inertia and unstable if the body rotates about the axis

of intermediate moment of inertia (see, for example, Ref. 1, Sec. 6.7).

The erratic behavior of the Explorer I, a satellite stabilized about the

axis of minimum moment of inertia, prompted a re-examination of the rigid

body assumption. Indeed, Thomson and Reiter2 were able to attribute the

behavior of the Explorer I satellite to energy dissipation resulting from

the vibration of flexible antennas. This conclusion was corroborated by

Meirovitch.3 References 2 and 3 used the so-called "energy sink" approach.

Their main conclusion was that a flexible satellite cannot be stabilized

about the axis of minimum moment of inertia, leaving as stability criterion

what has come to be known as the "greatest moment of inertia" requirement.

For a number of years, no significant additional work on the

stability of flexible spacecraft was performed. Some work on cable-connected

space stations cannot be really considered pertinent. Some investigation

that can be regarded as being related to flexible spacecraft is that by

Hooker and Margulies,4 who model a satellite as "a set of n riaid bodies

interconnected by dissipative elastic joints," and forming so-called

"topological trees."

The first serious attempt to treat rigorously the flexibility ef-

fects on the attitude stability of flexible satellites can be attributed

to Meirovitch and Nelson.5 Reference 5 investigated a satellite with

elastic appendages by means of an infinitesimal analysis. It appears that

Ref. 5 uses modal analysis for the first time in conjunction with the
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stability of flexible spacecraft. At the same time, Nelson and Meirovitch
6

used the Liapunov direct method to investigate the stability of a rigid

satellite with elastically connected moving parts. The motion of a satel-

lite consisting of two rigid bodies connected by an elastic structure was

investigated by Robe and Kane 7 by means of an infinitesimal analysis. Simu-

lating a spacecraft by a set of rigid masses interconnected by massless

elastic members, Likins8 derived the corresponding equations of motion, and

indicated that a solution can be obtained by modal analysis. Reference 8,

however, does not produce an algorithm for the solution of the equations.

Thermal effects and solar radiation pressure were found by Etkin and Hughes 9

to cause the anomalous behavior of spinning satellites with long flexible

antennas. The flexibility effects on the attitude motion of spacecraft

were also investigated by Modi and Berenton10 but the validity of their

analysis is in doubt, as they restrict the satellite vibration to planar.

An interesting paper by Newton and Farrell
II presents a method for

evaluating the natural frequencies of a flexible gravity-gradient stabi-

lized satellite. In the process, Reference 11 linearizes the equations of

motion about the deformed equilibrium. As generalized coordinates, the

investigators consider complete deformation patterns of the satellite.

This procedure is not only unorthodox but also tends to limit the number of

degrees of freedom of the simulation, not to mention the fact that one must

guess in advance configuration patterns. Moreover, there is some question

as to the evaluation of the equilibrium configuration. Nevertheless, the

paper contains some interesting ideas. A paper by Likins and Wirsching12

proposes to introduce the concept of "synthetic modes" in conjunction with

a "hybrid" coordinate system, where the latter is defined as a set of co-

ordinates consisting of rotational coordinates of the spacecraft as a whole
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and modal coordinates for the flexible appendages. This idea, however,

was introduced earlier in Reference 5.

All preceding investigations have one thing in common, namely,

they are all discretization schemes. Some use lumping of the distributed

mass of the elastic members, a procedure referred to sometimes as spatial

discretization, and others use series truncation in conjunction with modal

analysis. In a first attempt to apply Liapunov's direct method to hybrid

systems from the area of satellite dynamics, i.e., without using any dis-

cretization scheme, Meirovitchl3,14 ,15 studied the stability of spinning

rigid bodies with elastic appendages. It should be pointed out that the

term "hybrid" refers here to a system defined by sets of both ordinary and

partial differential equations, a concept different from that used by

Likins and Wirsching.12 Several new ideas were introduced in Ref. 13, such

as the use of the bounding properties of Rayleigh's quotient to eliminate

spatial derivatives from the problem formulation and the use of testing

density functions.

The ideas of Refs. 13-15 have been pursued by Meirovitch and

Calicol6 ,17 for the case in which testing density functions cannot be de-

fined readily. References 16 and 17 develop the so-called "method of

integral coordinates," whereby certain integrals are identified and defined

as generalized coordinates. Then, using the bounding properties of

Rayleigh's quotient as well as certain Schwarz's inequalities for functions,

a function K bounding the Hamiltonian H from below is obtained, K < H, so,

that K can be used as a testing function in conjunction with Liapunov's

direct method. The method of integral coordinates is basically a dis-

cretization scheme.

One problem that has received little attention in the technical

literature is that of deformed equilibrium, which can be referred to

mathematically as "nontrivial equilibrium." Such problems arise in the

case of gravity-gradient or spin-stabilized satellites with very flexible
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appendages that are not aligned with the satellite's principal 
axes. Find-

ing the equilibrium configuration can be quite a problem in itself,

especially if the governing equations are nonlinear. Addressing himself

to this problem, Flatley 8 obtained the nonlinear equilibrium configuration

of the Radio Astronomy Explorer (RAE) satellite by means of an analogue

computer. Deformed equilibrium has also been considered in Ref. 11, but

the details are not clear and no plot of the deformed equilibrium is shown.

In seeking stability statements for the RAE/B satellite, Meirovitchl9 ob-

tained as a by-product the nonlinear deformed equilibrium, thus confirming

the results of Ref. 18.

The present study is concerned with the stability of a hybrid dy-

namical system about nontrivial equilibrium. It contains many of the for-

mulations and results of Ref. 19. Qualitative stability statements are ob-

tained for the RAE/B satellite by both the Liapunov direct method and by an

infinitesimal analysis. In connection with the infinitesimal analysis, the

natural frequencies of oscillation about the nonlinear nontrivial equilib-

rium were obtained by a method developed by the first author of this re-

port.20 The method of Ref. 20 considers a state vector consisting of

generalized coordinates and velocities, where the coordinates include both

rotations and elastic deformations, and develops an eigenvalue problem in

terms of real quantities alone. The stability statements of Ref. 19 and

corresponding statements obtained from the solution of the eigenvalue prob-

lem agree completely.

2. Problem Formulation

We shall be concerned with the motion of a body consisting of n + 1

parts, of which one part is rigid and n parts are elastic. The domain of

4



extension of the rigid part is denoted by Do and those of the elastic parts

when in undeformed state by Di (i = 1,2,...,n) (see Fig. 1). Correspond-

ingly, the masses associated with the domains Di are denoted by mi
n

(i = O,l,...,n), so that the total mass is m = iE0 mi. The elastic domains

are rigidly attached to DO and have common boundaries only with Do.

The body m is assumed to move in a central-force gravitational

field, with its mass center describing a given orbit about the center of

force C.F., where the latter is assumed to be fixed in an inertial space.

In describing the motion of m it will prove convenient to identify

a system of axes xyz (see Fig. 1) with the undeformed state. The origin c

of xyz is taken to coincide with the mass center of m in the undeformed

state and axes xyz themselves coincide with the principal axes of m in the

same state. Note that the system xyz is embedded in the rigid part DO but

is not necessarily a set of principal axes for that part. We shall assume

here that the nature of the elastic motion is such that the mass center of

the entire system remains at the origin of xyz. In measuring elastic de-

formations, we consider reference frames xiYizi fixed relative to the

elastic domains Di (i = 1,2,...,n), where the direction of these axes is

chosen parallel to that of the elastic deformations. The origin of axes

xiYiz i is denoted by 
0i and in general it need not coincide with c.

Next let us denote the radius vector from the mass center c to a

point in the domain Di (i = 0,1,...,n) by hi + Li, where the point coincides

with the position of an element of mass dmi when the body is in undeformed

state. The constant-magnitude vector hi denotes the radius vector from c

to Oi; clearly h0 = 2. On the other hand, ri is the radius vector from Oi

to the point in question, and its components represent the independent

spatial variables associated with a point in the domain Di. Denoting by ii,

i, and ki the unit vectors along axes xi, Yi and zi, respectively, we can

write h + i = (hxi + xi)ii + (hyi + Yi)j + (hzi + zi).k (i = 0,1,...,n).

5



In describing the elastic deformations, we can use the Lagrangian or the

Eulerian approach. According to the Lagrangian approach the independent

variables are those of the body in undeformed state, whereas in the

Eulerian description of motion the independent variables are those of the

body in deformed shape. For infinitesimally small deformations the two

points of view coalesce, but for large deformations they do not. When it

is necessary to calculate the stresses in a body undergoing large deforma-

tions, the Eulerian approach is more convenient. Although we shall be con-

cerned with relatively large deformations, we have no interest in the in-

ternal stress distribution, and because of kinematical considerations we

shall find it more convenient to use the Lagrangian approach. Hence, de-

noting by ui the elastic displacement vector of dmi, and recognizing that

the vector depends both on spatial position and time, we can write it in

the form ui = ui(xi,Yi,zi,t)ii + vi(xi ,Yi,zi't)i + wi(xi Yi,zi ,t)ki, where

ui, vi and wi are displacement components measured along xi, Yi and zi,

respectively. If Rc is the radius vector from the center of force C.F. to

the mass center c, then the position relative to the inertial space of a

mass element dmi in deformed state is given by Rdi + hi + i + ui'

It should be noted that, by the definition of the mass center,
n
EiO .mi (h + .i + ui)dmi = 0.

In view of the above discussion, the kinetic energy can be written as

T - * Rdi dm m 1 mR * R + E I  ( +'i
S2 mi i di dmi 2 m mi i

+ 6i)  + ( + ,i + ui)dmi (1)

where the first term on the right side of Eq. (1) is recognized as the kinetic

energy of translation of the mass center c and the second one as the kinetic

6



energy due to motion relative to c. Dots.denote derivatives with respect to

time. Denoting by w the angular velocity of the set of axes xyz, hence also

of the sets xzi izi ( = 1,2,...,n), and recalling the expression for the

time derivative of a vector expressed in terms of rotating coordinates, we

obtain

r. + u u + i  + ui) (2)

in which u! = uii + vi i + w is the velocity of dmi relative to c due

to elastic effects alone. Introducing Eq. (2) into (1), we arrive at

n
T = m mR c * R + - w d " il fm ( + + ui) x u.dm

+ 1 n iu' u dmi  (3)

i=1 m

where Jd is the inertia dyadic of the body in deformed state about axes

xyz.

Equation (3) is most conveniently expressed in matrix form. 
The

matrix forms of the vectors Rc and w are simply {Rc} and {W}, respectively.

The inertia dyadic Jd and the term on the right side of Eq. (3) require
n (i)

further attention. The inertia dyadic can be written as Jd = i O di

where Ji ) (i = 0,1,...,n) is the inertia dyadic associated with domain

Di when the corresponding mass is in deformed shape. The superscript

i indicates that the dyadic is expressed in terms of the base xiYizi.

This would require that we express w in the same base. It is simpler,

however, to express every Jdi in the base xyz instead. Denoting the

(0) (i)
vector ri by r ir and rr. when expressed in the base xyz and x yi z,

respectively, and by {r 0)} and {r )} the associated column matrices,
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(0) T (i)
the relation between the two can be written as. {ri 2] {r i

where [ki] is the matrix of direction cosines between axes xiYizi and

xyz. In a similar fashion, if we denote by (0di and Jdi the inertia

dyadics when expressed in the base xyz and xiY iZi , respectively, and

by [J)] and [J i)] the associated inertia matrices, then the relation

(o) (i)
between the two can be shown to have the form [Jdi I =  i 1 ii

With the understanding that the inertia matrices imply the body in deformed

shape, we can drop the subscript d. Moreover, we shall drop the super-

script i when it agrees with the subscript. Hence, the inertia matrix for

the entire body, expressed in the base xyz, takes the form [J(] =

n T
io [0i] [Ji][Zi]. We note that [O] = [1], where [1] is the unit

matrix. A similar analysis can be performed with regard to the third

term on the right side of Eq. (3). It follows that Eq. (3) can be written

in the matrix form

1 T 1n T T T n (0)
T = 2m {Rc} {Rc} + {} [ [ti ][i]{w} + {} E [hmii=O i=l i

(0) (0) T 1 * + n T 4
+ r + ui ]ti] {uildmi E f {ui {u7.dm (4)+ r i

1 i 1 = mi I (

(0) (0) + (o)
where [h ) + ri  + ui  ] is a skew-symmetric matrix whose elements satisfy

the relation h + r + u() (hi) ) + u ), in which
imn imn imn =1  nmz (hi9 + i i ,

£nmz is the epsilon symbol (see Ref. 1, p. 109). Clearly, {u.} represents

the matrix notation of u!.
-1

The potential energy results from two sources, namely, gravity and

elastic deformations, denoted by VG and VE, respectively, so that

V = VG + VE. From Ref. 15, we conclude that the gravitational potential

energy can be written as
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Km K { T 3K n T T
VG -c -2R 3  z tr ([i] T[Ji][ i+2 3 Z fa i TPillki al (5)

c 1=0 c i=O

where tr denotes the trace of a matrix, and {a } is the column matrix of

direction cosines between the direction of the vector Rc and axes xyz.

The elastic potential energy, also known as strain energy, requires

special attention, particularly in the case of large deformations. No

general expression, such as for T and VG, can be written for VE. This is

so because an explicit form requires the knowledge of the type of elastic

members involved. For the moment, we shall be content to write

n
VE = c VEi (6)

i=l

where VEi (i = 1,2,...,n) is the elastic potential energy associated with

the member occupying the domain Di when the member is undeformed. We

shall return to the elastic potential energy shortly.

At this point it appears desirable to determine the functional

dependence of the kinetic and potential energy in order to derive general

Lagrange's equations of motion. To this end, we must specify the nature of

the elastic members. We shall be concerned with one-dimensional members

capable of flexure in two orthogonal directions. Any axial displacements

will be assumed to be a result of change of length caused by the trans-

verse displacements and not because of axial flexibility. In essence, the

members are cantilevered bars undergoing large transverse displacements

(see Fig. 2). Although we shall use nonlinear theory for the elastic

motion, this will be because geometric nonlinearities and not as a result
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of nonlinear stress-strain relations. The mass distribution is arbitrary,

but some of the members carry tip masses.

Letting the radius vector ri be aligned with axis xi when the bar

is undeformed, we conclude from Fig. 2 that

r ) = r. = x. ii , i = 1,2,..,n (7)

and

(i) = u(x i ,t) = v.(xi ,t)j + wi(xi't)k i = 1,2,...,n (8)
4 - 1 1

In view of this, the elements of the inertia matrix for the rigid member

can be written as

011 = AO ' J022 BO ' 033 = CO
(9)

J012 =021 =  013 = J031 = 023 032 = 0

where A0, B0, CO are the principal moments of inertia of the rigid part,

whereas these for member i are

Jill = J i[(hyi + ) + (hzi + wi) 2 ]dxi + mi[(hyi + vi) 2 + (hzi + i)2] x
0 xi =ki

i22 pi[(hxi + x i ) 2 + (hzi + ) dxi + mi[(hxi + xi 2 + (hzi + i) ]xi

= p[(hi + (h 2 + (yi 2dx + mi[(hxi + xi) 2 + (h + vi)2

dil2 =  i21 -I ipi(hxi + xi)(hyi + vi)dxi - mi(hxi + xi)(hyi + vi) xi=

i13 i31 Pi(hxi + xi)(hzi + w)dxi - mi(hxi + xi)(hzi + w xi
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i23 i32 0 pi(hyi +  )(hzi + wi)dxi.- mi(hyi + vi)(hzi + wi )  i=i

i = 1,2,...,n (10)

Note that pi and mi are mass densities and tip masses, respectively, and

hxi, h yi , hzi denote the coordinates of the points of attachment of the

booms measured from the mass center along axes xiYizi (i = 1,2,...,n).

We shall not specify the mass densities at this point.

The desired equilibrium configuration is that of gravity-gradient

stabilization. That implies that the mass center c moves in a circular

orbit with the constant angular velocity a (see Fig. 3), and the set of

axes xyz coincides with a set of orbital axes abc, where a coincides

with the direction of the radius vector Rc, b is tangent to the orbit

and in the direction of the motion, and c is normal to the motion. Note

that the orbital axes abc rotate relative to an inertial space with angular

velocity about axis c. The orientation of axes xyz with respect to abc

is given by three angles ej and {w} depends on these angles and angular

velocities ej (j = 1,2,3). Because the first term in the kinetic energy,

Eq. (4), is constant for a circular orbit, it will be ignored in future

discussions. Moreover, the last term depends on the elastic velocities,

so that the functional dependence of T is

T = T(Oe, j, , vi , wi , wi ) , j = 1,2,3 ; i = 1,2,...,n (11)

The gravitational potential energy VG contains the matrix {a}, which

is defined as the matrix of direction cosines between Rc and xyz. Since
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xyz can be obtained from abc by means of the rotations j ( = 1,2,3), it

follows that

VG = VG (ej, vi ' wi ) , j = 1,2,3 ; i = 1,2,...,n (12)

It remains to establish the functional dependence of VE. This

requires some elaboration, particularly because of the geometric nonlineari-

ties involved. First we wish to distinguish between the potential energy

VEA due to axial motion, and the potential energy VEB due to flexure.

Next let us consider Fig. 4 and denote by si the distance to any element

of mass dmi when measured along the deflected bar and by xi when measured

along the original direction of the undeflected bar. We shall assume that

the bar is inextensional, so that these two distances remain the same,

s i = xi . An element of length along the deflected bar can be obtained

from

(dsi) 2 = (dxi + dui )2 + (dvi) 2 + (dwi) 2  (13)

Assuming that dui is one order of magnitude smaller than dvi and dwi ,

recalling that dsi = dxi, and rearranging Eq. (13), we arrive at

1 rdv!i 2  (dwi)2 ]  ,
dui = 2 + di1 dx , i 1,2,...,n (14)

so that the axial displacement resulting from the transverse displacements

is negative. Because for inextensional motion the axial force Pxi does

not depend on the axial displacement, and, moreover, because a tensile

force opposes the motion, we have

n 1 n vil2 +(3wi 2

VEA - i= Pxi 2 i=l ~ i Pxi 2 idx i  (15)
i=l l axi12
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where total derivatives have been replaced by partial derivatives 
in

recognition of the fact that the displacements are functions not only of

spatial position but also of time.

The flexure potential energy is due to the bending displacements vi

and wi. We shall denote the bending moment associated with the displace-

ment vi by Mzi and the change in slope corresponding to an element of

length in deformed state by dezi because they both take place about the

zi-axis. Accordingly, the analogous quantities associated with flexure

about yi are denoted by Myi and dyi, respectively. It follows that the

flexure potential energy can be written as

VEB = i (My d4yi + M dz (16)
i=1 i

But the bending moments Myi and Mzi can be written in terms of the

associated flexural stiffness and radii of curvature, as follows

M Ezi (17)
yi Ryi  ' zi Rzi

where, from Fig. 5, the radii of curvature have the form

R _d= R dSzi (18)
yi d4yi z' i dozi

in which

dvi 21/2 2(dw 1/2 (1

dszi = + i dxi  , dsyi = + dxi (19)

Moreover

dvi dwi (20)
dxi  tan zi dxi  tan yi

13



From Eqs. (20), it follows that

d2vi(dv.\
-1 dVi-dx dxi dxd i. = d (tan- dv  = d- dxi
t dxi 1 dvi 2 vi 2

1+ 1d+2 +dvi 2

dxi jdxij
(21)

dwl d2w i

d1 i dxi
d d [tan -ddiw = dx i

yi xi + dwi 2 rdwi 2

dxiJ tdxiJ

Finally, introducing Eqs. (17) through (21) into Eq. (16), we obtain

Sn 1 n (dzi

VEB 2 il (1Mzi di + Myi doyi) 2 i=l EIi dsi

(d )2 (d2 (d2w 12

WOi 1 n i r2 dxi2
+ E dsy l * + El ddxi

yi dsy 2 i= 2 5/2 +d 2 i5/2

(22)

Recalling that the flexural displacements depend also on time, and writing

binomial expansions for the denominators in Eq. (22), we arrive at

E 1 EI vi 2  l av - 2 i 2
EB axiv 2 ( - ax i H

5 awi 2 (23)
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where the terms involving avi/ax i and awi/ax i are recognized as the cor-

rections due to the geometric nonlinear effect.

In view of the above, the potential energy has the general functional

form

VE = VEA + VEB

= VE (v!, v'.' w!, w'.') , i = 1,2,...,n (24)

where primes indicate differentiations with respect to xi.

From Fig. 4, we conclude that we must still account for the dis-

tributed forces pyi and Pzi* Regarding these forces as nonconservative,

and assuming that they do not depend on the elastic deformations, we can

account for their effect in the form of the nonconservative work

Wn = i (pyi v. + p. wi)dx (25)

so that the total work can be written as

W = W-V +W Wnc (26)

where the conservative work has been recognized as being equal to the

negative of the potential energy.

The system differential equations of motion, and the appropriate

boundary conditions, can be obtained from the extended Hamilton's

principle (see Ref. 1, Sec. 2.7)

ft2 (6T + -W)dt = 0 (27)
t15
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where all the virtual displacements must be set equal to zero at

t = tl't 2. Introducing the Lagrangian L = T - V, Eq. (27) can be written

as

(6L + 7Wn)dt = 0 (28)

where the Lagrangian has the functional form

L = L(e, e,, vi, vi, vw , wi ' w i  ' , w) , j = 1,2,3 ; i = 1,2,...,n

(29)

It will prove convenient to separate the Lagrangian into that

associated with the rigid domain DO and those associated with the elastic

domains Di. Hence, let the Lagrangian have the general functional form

(see Ref. 19)

n i E
L(t) = LO(t) + Z i(xi,t)dxi + Li(9i,t) (30)

i=l 0)

where

LO(t) = LO[eO(t), ej(t)], j = 1,2,3 (31)

Li(xi,t) = Li[ej(t),oj(t),vi(xi,t), vi(xi't) ,v (xi ,t),v'(x i,t)

wi(x i,t ),...,w ' (x i,t) ]

i = 1,2,...,n (32)

Li(ki,t) = Li[ej(t), j(t),vi(gi,t),vi(it), wi(gi,t),wi('i't)]

in which Lo is the Lagrangian corresponding to the system in undeformed

state, Li the Lagrangian density associated with any point of the elastic

member i, and Li the Lagrangian corresponding to the tip mass. Moreover,

16



zi represents the length of member i. From Eqs. (30), (31), and (32), we

conclude that

3 AL0 j] i 1i 1

E = _- 66 + E 6j + + 6vi 6vi

aL i  Li Li aLi w i
+ a vi + i 6wi + i i 5w! i + jWdxi

aL aLi  . Li
+ av 6vi(it) + .(-,t) 6vi(9it) + 6wi(zi,t)

Sai (Li ,t) 6wi '1t) (33)

In addition,

Wnc = li (Pyi6vi + Pziwi)dxi (34)
i=1 0

Inserting Eqs. (33) and (34) into (32), and integrating by parts with

respect to t, we arrive at Lagrange's equations for the rotational 
motion

aL _ d (aL 1 0 , j =1,2,3 (35)
aej dt (86J

Moreover, integrating by parts with respect to t and xi, we obtain

Lagrange's equations for the transverse displacements, and the 
associated

boundary conditions, in the form

aLi + a iL - L 2  aLi + p 0, 0 < x i < i

avi  at a viJ axi  v ax alvil

1 = 1,2,...,n (36a)

and
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S - i 6vi = 0, v i = 0 at xi

i = 1,2,...,n (36b)

S- - -~a a v = 0, - vi = 0 at xi 0

Equations similar in structure to Eqs. (36) can be written for wi by

simply replacing vi by wi.

3. Nontrivial Equilibrium

Let us consider the case in which pyi 
= Pzi = 0 and define an

equilibrium configuration as a set of dependent variables ej, vi, wi

constant in time and satisfying Lagrange's equations. 
Because these

variables do not depend on time, they must satisfy the 
equations

L - 0, j = 1,2,3 (37)
aej

and

avi+ 2 - 0, 0 < xi < , i = 1,2,...,n (38a)

aLi

avi o L q 6vi =( 7 0, tv! = at xi = ti

ai xi ; i

i = ,2,...,n (38b)

1v !l cW = 0 - i 6v' =0 at x =0

as well as a set of equations similar to (38) for wi. We shall denote the

solutions of Eqs. (37) and (38), together with the set of equations for wi'

18



by ej0O, Vi(xi)' Wio(xi
), where the first are constant and the latter

functions of the spatial variables xi alone.

4. Perturbations About Equilibrium. The Variational Equations of Motion

The interest lies in the stability of the system in 
the neighbor-

hood of the nontrivial solutions ej0, Vio(xi), Wi0(xi). We shall seek

stability criteria by means of Liapunov's direct method, 
and, to this end,

we let the solutions of Eqs. (35) and (36) and the companion equations to

(36) have the form

ej(t) = ejO + ejl(t), j = 1,2,3
(39)

vi(xi,t) = Vio(xi) + vil(xi',t), wi(xi,t) = Wio(xi) + il(xi,t),

i = 1,2,...,n

where Ojl(t), vil(xit), wil(xi,t) are small perturbations. Inserting

Eqs. (39) into Eq. (30), and expanding a Taylor's series about 
the non-

trivial equilibrium, we obtain

3 LL at
L~e =s, + W 2) l + aL- 01

Sj=l jo jl

n + v + v + W +
i 1 vi0  I+ a 1 0 Vil avo0 l av" 11 awi0 il

aL i LiL
aw 1 dxi i i vil 40 "il lxi 1 i

1 3 3 2L 2L _2L 1
+ + 2. +

-j=1 k=l .aej0aekO ejlek +2 aej0kO ejlekl aBj0akO ejlekl
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32 1 2 1 + 2 i .11 3 a
2 V i 0  v il io Vil il +  gWio =0 il +  "'"

2. i 2 2i 2 3 2Li
1 '2 + w 4 n + 2 r ejlvil

+ il il , ., il jxN o a10 o 10 J= V0ov i 2

2 92[Li "
S

2L a+ + ejlil
+ 3j0 w i jO il jv l ij0 V joio

32L 32 Li 32Li.

+ 2 )jo 0W iO Oj lil + vi O WiO Vi lil w i o8 iO wilvil +

2^. 32 L 2Li 2 + 32L *2

+ W V1 1 1 ilw i 2 .. . 2

32L 2 32L. 2 3 2Li a2Li

w j 1 j=1 aej0  Vo aej OVi o.

2L 32L 2Li

+ ejOwi0 I + 2 avi0awi0 vil i1 avioaki1

2L. 32Li V (40)
+ _ + Uv0 ilFil +

where L = L/aej j etc. But the term L(ej 0 'v10 ... 5,,0)

is constant. Moreover, by virtue of Eqs. (37) and (38) and the companion

equations for wi, all the linear terms in the perturbed variables in

expansion (40) reduce to

n3i( ' 1 n 1 L.S 1 + 1 wildx +j=l 'jO i0 vi  oil  0 3Vio v
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+i jO ' (41)

which are all linear in the generalized velocities jl1'il' il. In view

of this, if we retain terms through second order only, the Lagrangian

becomes

L = T2 1 + T11 + T1 - V1  (42)

where

3 3 2L  . . a. Li .2

T21 2 E ejlekl + 2 ) 2O vil 2 il
21 j==l k 0 ej 0 i=kO i= IW1 iO

a2 . . 3 32 . .2[ . .
+ 2 Vilil + 2 elil ijoio elwil dx

avi0awi0 il1 j+ 0b ai0aw 0  J

Fa2Li .2 a2Li .2 a3 2L
+ 1-0v vil 2 w1 il + 2 v ilWil + 2 j f jlVil

v0 1 av io0awiG j=1 kajoavio

1 i

+ A2Li " "] (43)

is quadratic in the generalized velocities,

3 3 2 n i [3 -a21
= E E jle kl + Z vi

11 j=l k=l aej0akO k i=l JO J = ej0Vio e 1vil1

a2i Ci i  .2 i ___ ]
+ a6oio jI il + ei ioio ejlw il
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2 2 E. 2 L.
i 1il il il dxi + 1i . j vil

32 Li "_2Li _+ 2Li

+ j i e1 il + j 1i  6joWio jlw il

j8viejcw j0 WiO

2Li 2 L. (44)

+ ilil + ilWil X
avivio 9ii0awi0 x 1

is linear in the generalized velocities, and

3 3 2L n . iP2Li 2 2Li ,2

L V.
T O 1 - V 1 = 1 k 1 ej o e j + 1 .Lv+ 20 I

j=l k=l e0jOkO jlkl + i=1 G 2

2 2 2j 2 2i 2 2 ,2 3 i2 _ e
V w 1  w aww1 + 2 w 2 ejvio

ViO + iO jil jl

+ aojo i 0 jl wil + 2aVi0aWi0  1 1 + v vil ail
2 a 2 L 2 2L 2 3 2

2Li w' w" Ldx. + i l 1  +2 1i vil
ai0awi0 + 2 -av0 0 ' =1 aej av

6 -, -j 1 La -- v2  i w;io 10: o
aLL2i 3

+ v'o.i ejlWil i (45)

the general functional term

,L L(j j il il il ' "il l), j = 1,2,3; i = 1,2,...,n (46)L+ W,!l + a'V iVil""'W2 Wil iii22

+ 2L22
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Consequently, the variational equations can be written in the form of

the Lagrange equations, Eqs. (35) and (36), but with the subscripts j and

i replaced by jl and ii, respectively. Unlike Eqs. (35) and (36), the

variational equations possess trivial equilibrium.

5. Discretization by a Rayleigh-Ritz Approach

The variational equations discussed in the preceding section con-

stitute a set of hybrid differential equations, in the sense that the

equations for the rotational motion are ordinary differential equations

and those for the elastic displacements are partial differential equations,

where the latter are subject to given boundary conditions. It will prove

convenient to transform the system into one consisting of ordinary

differential equations alone. This can be done by using a discretization

procedure based on the Rayleigh-Ritz approach. Indeed, let us introduce

the notation

ej 1 (t) = qj(t), j = 1,2,3

p+3 2p+3
v11(x1,t) = j(xl)qj(t), 11(x 1 't) =p+ (xl)qj ( t)

j=4 j=p+4

(47)
3p+3 4p+3

v2 1 (x2 ,t) = 21(x2t) E (x2)q(t), 21 )j(x2 t)
j=2p+4 j=3p+4

--------------------------------------------

(2n-l)p+3 2np+3
v nl(xn ,t) = j(x )qj(t), wnl(xn,t) = z *j(xn)qj(t)

j=2(n-l)p+4 j=(2n-l)p+4

where j(x i ) and ij(x i ) are admissible functions, taken as the eigen-

functions of the linearized system. With this notation, Eq. (43) can
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be written in the matrix form

T { (t)T~m]{(t)} (48)
21 

T

where [m] is a constant symmetric matrix having the elements

m a2L , j,k = 1,2,3 (49a)
jk- a8jae

k O kO

Sk(xi)dxi + • k(xi )

mO 0 7eoio XiJ = i

j = 1,2,3; k = 2(i-1)p+4 , 2(i-l)p+5,...,(2i-l)p+3,

i = 1,2,...,n (49b)

mjk = a k( x i ) d x
i + L (x

j 0 2j 0  0  kI L ij0awi 0  kl
X. =Ri

1

j = 1,2,3; k = (2i-1)p+4, (2i-l)p+5,...,2ip+3, i =1,2,...,n

t i 2. ii 1 2 Li  ) (49

mjk = i (x )k(xi)dxi) + j(x k(
jk 2 0 ki 2

0 ii0 0xi ixi

j,k = 2(i-1)p+4, 2(i-l)p+5,...,(2i-l)p+3, i = 1,2,...,n (49d)

ki 2L7 2Li
mj avi0 0 j(xi)*k(xi)dxi x+ k°vi ( xi)
mk 0o 3iO O + L 0Ix0 x) x z

j = 2(i-1)p+4, 2(i-I)p+5,...,( 2i-l)p+3,

i = 1,2,...,n (49e)

k = (2i-l)p+4, (2i-1)p+5,...,2ip+3,
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i L p
mjk ( (xi)*k(xi)dxi + j [(x2(xi)

j,k = (2i-l)p+4, (2i-l)p+5,...,2ip+3, i = 1,2,...,n (49f)

On the other hand, Eq. (44) leads to the matrix form

T11 = {q(t)}T[f]{(t)} (50)

where [f] is a constant square matrix with the elements

f = 2 L , j,k = 1,2,3 (51a)

f f k(xi)dxi + k(xi )
jk 0 joVio ej O v i O  xi Ri

j = 1,2,3; k = 2(i-1)p+4, 2(i-l)p+5,...,(2i-1)p+3, i = 1,2,...,n

(51b)

2
kj A 2 LL

fjk io k(xi)dxi + [ ea k(xi)
xi = Ri

j = 1,2,3; k = (2i-l)p+4, (2i-l)p+5,...,2ip+3, i = 1,2,...,n

(51c)

A 2L. 2L.

i Oi a 4j (x i )dxi  + iv j (xi )k = 0 akOaviO [7kOVio xI = i

j = 2(i-1)p+4, 2(i-l)p+5,...,(2i-l)p+3, i = 1,2,...,n;

k = 1,2,3 (51d)
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fk j(x)dxi + o (xi)
0 kOawi0 [ OkOawiO Ix -,= kx i

j = (2i-1)p+4, (2i-l)p+5,...,2ip+3, i = 1,2,...,n; k = 1,2,3 (51e)

a 22. 2Li

j aviO ,j(xi)*k(xi)dxi + (x k(xi)
Six i = i

j = 2(i-l)p+4, 2(i-l)p+5,...,(2i-l)r+3,

i = 1,2,...,n (51f)

k = (2i-1)p+4, (2i-l)p+5,...,2ip+3,

f o2

fjk f 4k(xi)Ij (xi)dxi + I k(Xi ) (xi)
0 avi 0awi0  -aviawi x

j = (2i-l)p+4, (2i-l)p+5,...,2ip+3,

i = 1,2,...,n (51g)

k = 2(i-1)p+4, 2(i-1)p+5,...,(2i-1)p+3,

Finally, from Eq. (45), we can write

TO V1  !{q(t)}T[k]{q(t)} (52)

where [k] is a constant symmetric matrix with the elements

32L

kjk aej0akO j,k = 1,2,3 (53a)

k, a2[ a2L

kjkae a k(xi)dxi k(i)

j = 1,2,3; k = 2(i-1)p+4, 2(i-l)p+5,...,(2i-1)p+3,

i = 1,2,...,n (53b)
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k 2' 92Li Fdi* x
kik = fo aejawo Op xidx - aJ awi y 9,

j=1,2,3; k =(2i-1)p+4, (21-1)P+5,...,2ip+3, i 1,2..,

(53c)

kik 3 ~2~ 2L- a2L-
kJO 1 (xivk'i + 1(xi 1x) + 2 4. (x) k(xi)

aj1 o 10

av' a2l k
10 10

-[2a2- Oi (xi) (xi] =

j,k =2(i-l)p+4, 2(i-I)p+5,...,(2i-1)p+3, i= 1,2,...,,n (53d)

k. 1,aE - a 1-
a2L. lav

2L. o i(xi) xdi al ai x)*(x1)J

j 2(i-1)p+4, 2(i-1)p+5,... ,(2i-l)p+3,

i =.1,2,... ,n (53e)

k =(2i-l)p+4, (2i-1)pI5,... ,2ip+3

f2L. a2l 32L.

k1~i'i 1 1 x ' x
kik f NJ j -- (xi)*k(xi) + aw2 aw+ 2 k

0O 10 10

+ a i !X4(i + '(i*x d
aw' aw"
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2Li
-F:2 j(xik(xi)]Xi

0 xi = i

j,k = (2i-1)p+4, (2i-l)p+5,...,2ip+3, i = 1,2,...,n (53f)

Introducing Eqs. (48), (50), and (52) into Eq. (42), we can write

the Lagrangian in the matrix form

L 2--}T[m]{i} + {q}T[f]{ q_ qT[k]{q} (54)

Using the approach of Ref. 21 (see Sec. 3-4), we can write Lagrange's

equations in the matrix form

d NO Al = {0} (55)

Hence inserting Eq. (54) into (55), we obtain the equations of motion

[m]{q} +([f]T - [f]){q} + [k]{q} = {0} (56)

so that, introducing the notation

[g] = [f]T _ if] (57)

where [g] is a skew-symmetric matrix, [g]T = -[g], we obtain

[m]{q} + [g]{q} + [k]{q} = {0} (58)

where [m] is identified as the inertia matrix, [g] is a "gyroscopic"

matrix and [k] is a stiffness matrix which includes terms due to elastic,

gravitational, and centrifugal effects.
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6. Liapunov Stability Analysis

We shall seek criteria for the stability of motion in the neighbor-

hood of the nontrivial equilibrium by means of the Liapunov direct method.

This is equivalent to the problem of stability of the perturbed motion

about the trivial solution. In terms of the discretized system, the

perturbed motion is described by the vector {q(t)}, so that the interest

lies in a stability analysis about the trivial equilibrium {q} = {0).

It was shown in Ref. 15 that the Hamiltonian is a suitable

Liapunov function for the type of problem at hand. Assuming that the

system possesses a certain amount of internal damping, however small, the

equilibrium is asymptotically stable if the Hamiltonian is positive

definite. In terms of the perturbed variables, the Hamiltonian has the

form

H = T21 - TO1 + V1 = {~(t)}T[m]{(t)}+ ~{q(t)} T[k]{q(t)} (59)

But the function T21 is positive definite in the generalized velocities

qj(t) by definition. Hence, if the function

S= {q(t)}T[k]{q(t)} (60)

is positive definite in the generalized coordinates qj(t), then the

Hamiltonian is a positive function in the generalized coordinates and

velocities and the equilibrium is asymptotically stable. The function

K is positive definite if the matrix [k] is positive definite. Whether

[k] is positive definite or not can be ascertained by means of Sylvester's

criterion (Ref. 1, Sec. 6.7). The matrix [k] will be referred to as a

Hessian matrix.
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7. Natural Frequencies of the Complete Structure

The Liapunov direct method provides qualitative information con-

cerning the stability or lack of stability of an equilibrium configuration.

Similar information can be extracted from the system of equations (58)

via the eigenvalues. In addition, the eigenvalue problem yields results

of a more quantitative nature in the form of the system natural frequen-

cies and the normal modes for the complete structure, where the latter are

defined later. It turns out that Eqs. (58) lead to an eigenvalue problem

of a special nature. The nature of the eigenvalue problem can be con-

veniently discussed by converting the set of equations from second order

to first order. Indeed, if the configuration vector {q(t)} is of

dimension N, then we can introduce the 2N-dimensional state vector

{x(t)J in the form

{x(t)} = ) (61)
{q(t)}J

No confusion should arise from denoting the state vector by {x(t)}, because

the symbol xi used to denote the position of a point in the elastic

members represents a spatial coordinate independent of time and not a

time-dependent generalized coordinate. Accordingly, if we introduce the

2N x 2N matrices

Im] [0] F [g] [k]
[M] = 0] [k] L-[k] [0]1 (62)

then the set of N equations (58) can be transformed into a set of 2N

first-order equations having the matrix form
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[M]{x(t)} + [G]{x(t)} = {0} (63)

where [M] is symmetric and [G] is skew-symmetric,

[M] = [M]T , [G] = -[G]T (64)

because [m] and [k] are symmetric and [g] is skew-symmetric.

The matrix equation (63) is of the special form treated in Ref. 20,

so that the eigenvalue problem can be solved by the method developed

there. Hence, letting

{x(t)} = e {x} (65)

where A and {x} are constant, we obtain the eigenvalue problem

X[M]{x} + [G]{x} = {0} (66)

It is shown in Ref. 20 that the solution of the eigenvalue problem (66)

consists of 2N eigenvalues Ar and eigenvectors {x}r (r = 1,2,...,2N),

where the eigenvalues consist of pairs of pure imaginary complex conjugates,

Ar = + iwr, and the eigenvectors also consist of pairs of associated com-

plex conjugates {x}r and {x*}r (r = 1,2,...,N). Moreover, the eigenvectors

are orthogonal in a certain sense. Reference 20 provides an algorithm where-

by the eigenvalue problem can be solved in terms of real quantities. The

method will be used later in this work to solve the eigenvalue problem for

a specific spacecraft.

8. Lagrange's Equations in Explicit Form

Lagrange's equations, Eqs. (35) and (36), are written in a

general form. Before obtaining the nontrivial equilibrium and the
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corresponding variational equations, we must express them in a form in

which the various coordinates appear explicitly. By virtue of the assump-

tion that the satellite mass center moves in a circular orbit with

3 2
orbital velocity n, we can replace K/Re by 2 in Eq. (5). Moreover, the

first terms in Eqs. (4) and (5) can be ignored because they are constant.

In view of this, if we recall that the Lagrangian can be written as

L = T - VG - VEA - VEB, then we can substitute Eqs. (4), (5), (15), and

(23) into L, and obtain

L(t) = {w)}T[j(O)] + {wT{K} + TE + . s2tr[J(O)]

2 E. 2 aT 2 i_l [ xi .w2 )

+ EIZiv 2 ( 1 vi 2 ) + EI '2(1 w 2)]dx (67)

where Pxi is the axial force at any point of the slender rod, and

[J(0) J(0 i]T[Ji][il (68a)
i=0 i=O

n (0) (0) (0) (0)

(0) T+ u)][i i] {u.}I  (68b)

TE = i p{u dxi + m . {u (68c)

E 2 il 0 xi
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in which [j(O)] is the inertia matrix of the body in deformed state in

terms of the reference system xyz, {K} is an angular momentum matrix due

to the elastic velocities, and TE is the kinetic energy due to the elastic

velocities. The elements of [Ji] are given by Eqs. (9) and (10). Intro-

ducing the notation

Jill=  i[(hyi+vi) 2+(hzi+Wi) 2]'  Jill(i) = mi[(hyi+vi) 2+(hzi+"i)2] xi=ki

Ji22 = Pi[(hxi+xi) 2 +(hzi+W )2 ' Ji22( i ) = mi[(hxi+xi) 2+(hzi+i)2] xi i

Ji33 = i[(hxi+i 2+(hyii)2' Ji33(i) = mi[(hxi+xi)2+(hyi+vi) 2 xi=i

3il2 Ji21 = -pi(hxi+Xi)(hyi+vi)' il2(i ) = Ji2l1 i) = -mi(hxi

+x.)(hyi+vi)
yl i xi=i

Jil3 i31= -pi(hxi+Xi)(hzi+Wi ) '  Jil3 ( - i ) = Ji3l(i) = -mi(hxi

+xi )(hzi i) xi= i

i23 Ji32= -Pi(hyi +Vi)(hzi+i )  Ji23(p i ) = Ji32(i)= -mi(hy i

+vi)(hzi+wi) xii i (69

we can write

[Jil= f [Ji]dxi + [Ji(ti)] (70)
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In a similar way, from the second of Eqs. (68), we have

n
{K} = f {Ki}dx i + {Ki(9i)} (71)

i=l 0

In view of the above, the Lagrangian densities can be written as follows

1 ̂ Ti) + l 2 ^l(0)
Li (xi ,t) 2 }T[j){j + {w T{k~i + { { 1 {i6 + {i tr i ]0)

3 [2 T [0)]{a1  P xi(v 2 + w!2 ) - EIzi v'2 (1 vi2 )

- EIy i  , 2 (1 - w 2 ), i = 1,2,...,n (72)

whereas the parts of the Lagrangian associated with the discrete masses

are

+ l T{uJi}iLi (i ,t) = I {m)T C )J Ti)] + { mTKi(i)i T

1 1

+ 2tr[J (0)) 2 T i)  a}  (73)

From the context it should be obvious when brackets and braces denote

matrices in Eqs. (67) through (73) and when they do not,

Substituting Eq. (67) into Lagrange's equations for the rota-

tional motion, Eqs. (65), we obtain

( { T [j(0)] {} + (J T {K} - 3 2 TJi] [(O)]{ka}

- (_s{w}T1([j(O)] {w} + {K}) = 0 j = 1,2,3 (74)
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Moreover, Lagrange's equations for the transverse displacements vi are

lT ()] + T av {Kii + 2 tr - [J1O)

-3 012 {aT (7 [d(0)1]{-a} a {a T {K + pi2 v 1 at avi

, 112 2  ,
- ( Pv + 5 EIzi ivi + 922 [-EIzi vi (1
axi  axi

5 '2
- vi )] + p = 0 , 0 < xi , i = 1,2,...,n (75a)

which are subject to the boundary conditions

-(Px 5 EIzi v2) v -I- [EIzi v (1 - 5 v)

+1 2({T.a J0) {w} + tr ai [J (0)] -3{PIT Ta [j()
2 av 1  avi a av1  a

a ({wT {a K} + Pi vi) = 0

at x i= i , i = 1,2,...,n (75b)

Elzi v! (I 5 v2) = 0

vi = 0, v' = 0 at xi = 0, i = 1,2,...,n (75c)
11

Similarly, Lagrange's equations for the displacements wi are

S{T 0) {} + {T a { i 1  2 tr
'- LwJ.Jl wJ + {W} { L + Ijj2Saaw 2 awi
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- 2 T a1 ]  {a } - K) + p~

x i Ely i  2 i 2  -El wi  (

- 2)] + p = , 0O < xi < ,i , i = 1,2,...,n (76a)
P] zi '

which are subject to the boundary conditions

-(xi - EIzi 2) wi + - [Ely i  .'(1 - w!2)]

+ I_ 2 {m}T 3 [A0)] {w} + tr [J(0)] -3 {a T [() a

2 awi

a- { T D {K} + pii = 0

atD i} 0 at x = i ,  i = 1,2,...,n (76b)

Ely i w.(l - w!2) = 0
2

w = 0, w! = 0 at x. = 0, i = 1,2,...,n (76c)

9. Equilibrium Equations in Explicit Form

For a gravity-gradient stabilized satellite, the angles eO(j =

1,2,3) are measured relative to an orbiting system of axes. The orbit

being circular, with the orbital angular velocity being equal to Q, the

orbital axes rotate relative to an inertial space with angular velocity Q

about an axis normal to the orbital plane. This axis is denoted by c (see

complete definition later). Hence, the angular velocity matrix {w} can

be written as
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w)} = £ + b}3r (77)

where {fc} = {kc(ej)} is the matrix of direction cosines between axis c

and the reference system xyz, and {w}r = fw(ej,Oj)}r is a matrix whose

elements are the angular velocity components of system xyz relative to

the orbital axes. They are linear combinations of the velocities e6

(j = 1,2,3).

The equilibrium equations can be obtained by deleting from Eqs.

(74) - (76) all the terms involving derivatives with respect to time.

This implies that we can replace {w} by {£,c in these equations. Hence,

the nontrivial equilibrium must satisfy the general equations for the

rotational motion

{c} T[j(0)] {I c) - 3{ka}T[J(0)] -2j {ka} = 0, j = 1,2,3 (78)

as well as the boundary-value problems defined by the differential equa-

tions

1 2 {cT a 0)] c} + tr [a J)] 3fka}T -_ (0)'fal
2 -Ti  avi  avi

+ -- [(Pxi - El z  v 2 )v!] - [EIziv (l] = 0

ax xi 2 zi 1x 2 v' )

1

0 < xi < i' i = 1,2,...,n (79a)

and the boundary conditions

_(Pxi - E v '2 )v! + -- [EIziv"(l- v 2 + 2 T )]{) [ Ixi zi xi 22 C
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(0) T (0)
+ tr (0] - 3{a }T C3 a =

av ; av i 1
at xi ,  i = 1,2,...,n

- EIziv"(l - 5 2) = (79b)

vi = 0, v = 0 at xi = 0, i = 1,2,...,n (79c)

Moreover, it must satisfy a set of equations similar in structure to Eqs.

(79), but with vi replaced by wi.

10. The Variational Equations for the Discretized System

The variational equations for the discretized system were obtained

earlier in the form (58), where the matrices [m], [g], and [k] are defined

by Eqs. (49), (51), (53), and (57). Although the equations just mentioned

have the advantage of revealing the symmetry of [m] and [k] and the skew-

symmetry of [g], the formulas for deriving the elements of the matrices

are not the most suitable from a computational point of view. Indeed, we

wish to present a procedure whereby the actual derivation of the variational

equations is performed by a digital computer.

Consistent with earlier notation, we shall denote quantities

associated with equilibrium by the subscript 0 and perturbed quantities

by the subscript 1. With this in mind, we can write the Lagrangian in

the form

L = Lo + L1 (80)

L T (0) + {K} + T + 1 02 tr[J(O)0
L0 2= + Cw K} + TEO +

3 2 T (0)S02 a a0 [J 10() a0 _ VEO (81)
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and

L1  T ( + { T[j(O)]{}j + .1  T (0)

T )lT T T
+ {W} (0) I oo+ {w1T{K}1 + {w},{K 1 + {w}0{K}1 + TE

+ 1 02 tr[J(O0 )] - 32 aT [(0) o Ia 2 a}T [(0)

- 3 2{a 0 - 3Q2{a}T [J(O)]i{ a}0  VEl (82)

in which

3
})= {W} +  W1 = o o +  Wla- } qi +fi=l ae0 10

3 3  a2 2
+ {} I I qiqj + 2 W qji (83)2 i=l j=l "aeiOaej0 iae0ao0  }

3 F
{Za} = { 0+ { a1 + 0 + E "-i<a) qi

i=1 iO

2 3 ae aia qiqj (84)
2 i= j=l eiO jO

n(0) n n 9 i
[( = [i]T[ji][i] = [idxi + [Ji(i)] Lii

i=O i=O 0

(0) (0) (0) n (0a 1T 0' vl
- [J(o + [J(O)] = [J(O)]o + i[ LVio]Vil
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+j ii-w +~ a3 i 2 a 2Ji a 2 i a 2J dx1
a - vi 1 + - ilil 32 Wi]

F 2
av. 0  Law1 2 L av 2

+ Vi I(~1  v(9,i)w 11I(;z1) + 22 2 wi(i)j [gj](85

MK E I f kidxi + {Ki(gi)}}

nf 9, i faK1 I +~ +a ~ Ib+r

+ f____ +__ W!

avioaw~o} .l11 avirjw iojvwilldi+t~(~} (

+~ j (si. + +.Z AKizi)} Fa.(.) ____

awjc, tl+ avlo (9i OI

~avio)wio tav! awiotv 1~~j 12j.(6
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Note that Eqs. (83) - (86) represent Taylor's series expansions of {m),

{za}, [j(O)], and {K} about equilibrium. Moreover, we have

TEO = 0 (87)

and

1 n i p{u{u }dx + mi{i x =

2 0Ijx 1

1 i(vil +  )dxi + mi(vil +  il xi = (88)

=1 0 +

as well as

V av0  + + E
EO 00 xi zi 2

2 2 2.
+ El xi2 1] - dxi (89)

[x j 1

and

S ax x ax ax ax 2 .

i 'i10 avil iO aw avl a

av av2 av. 2

- 5 EIx I + E- - 1 -

2 , ax i ax x ax
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avi0 a il 2il- 10 EIi x
z axi ax? ax ax?

2 .1 i 1
aw. w aw 32W 2 9w 2

-5 El. t a io l 5 Ei i o i1yi ax ax axi 2 ax axi

aw. 2 2w 32w. aw. 2 a2w 2
5 010 11 5rg q i1 o il t

L+ 2Eyi 2  ax ax ax +?

aw a2w awi 11 a2wi110 Elyi " i dx (90)

To obtain the variational equations in terms of the discrete co-

ordinates qj(t) (j = 1,2,...,2np+3), we must insert the modal expansions

(47) into L1 and perform the indicated integrations over the spatial

variables xi (i = 1,2,...,n). Because the resulting expressions are very

lengthy, we shall not write them explicity, but proceed with the derivation

of Lagrange's equations instead. To this end, it will prove convenient to

denote constant terms by the subscript c and terms that are linear in the

generalized coordinates q (t) and generalized velocities q.(t) by the sub-

script Z. This enables us to write

=aLl ± {w} [[J(0) ]0 { }0 + T}1 J(0)( )

aqj c 9

+ ([J(0)l),{mW} 0 + ({K}l)] j = 1,2,3 (91a)
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= W Tj {K1 I + {m} {K}) + TE1
aqj 1 j c 0 j a

j = 4,5,...,2np+3 (91b)

a{1 T {WI + T

3 2( {j {k} [J(O)] {a}I + [J(O)] {ka}o]

j = 1,2,3 (91c)

3L T

= 1  T a (0) 11 {00 + 1 A

+ {m} [a [J(0) )]l { } + ( {K}I]

0 aq 2c

+3 02 ( c + V

z C O {alo " -j Elz

j = 4,5,...2np+3 (91d)

which enables us to write Lagrange's equations for the perturbed motion

in the compact form
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"- d (0) 1 [ J ({)1 } W T [l)J(O)]o 0}]

3 -2 7 {MaT 0) - 0 Tc (0) 0 k

3 p2 iti) JI

+ [J(O) 1 {}0 +  {K}i l ) ,= 0 j = 1,2,3 (92a)

{+ TT (0)){w 0 + K)

+ j-a 2  tr [J(0) 1  2 0

3 02 k a (0) aV 1

- VEI (a ( [ J(O) I f {al + y El]

-} {K} + }0 (j TE = 0

j = 4,5,...,2np+3 (92b)
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As mentioned already, the advantage of Lagrange's equations (92) over

those derived in Sec. 4 is that Eqs. (92) permit automatic derivation by

means of a digital computer.

Before specializing the equations to a particular satellite, let

us derive an expression for the axial force Pxi in terms of matrix nota-

tion. The axial force Pxi is due to centrifugal and differential gravity

effects. Introducing the modified potential energy density associated

with member i

Vi mod = - ({ [jO)]{ c} + tr[j30)] - 3{9a T[O)]{al)

1 2 c}T[d )(xi) c) + tr[J)(x.)]

T ) (93)- 3{a} T[J )(xi)]{Ia})6(xi - ki) (93)

where the terms inside parentheses and multiplying S(xi-k i) are due to the

tip masses, the axial force density can be written in the form

P Vi mod
Pxi(xi) xi

[ ' axi(

= 2a (T '0) c} + trj ' - 3{ T j 0) a})  (94)

in which we introduced the notation

r()a 10) a (o)

[(°)' i ) + --y [ )(xi)]6(x-ti ) (95)

'2 12
Observing from Eq. (67) that Pxi is multiplied by (vi + wi ), we ignore

any transverse terms in [Ji ', so that using the first of Eqs. (68) and

Eqs. (69) we obtain the approximation
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[ 0)], = 2(hx i + xi) (i + mi6(xi-i) [i] T  0 1 0 [ i ]  (96)

0 0 1

Inserting Eqs. (95) and (96) into Eq. (94), we can write the axial force

Pxi at any point xi in the form of the integral

Pxxi  . Pgi(i)dgi = 2({ c}T i (Ei)di {c}
t i x  i )i )

+ tr JO)i i)di ] - 3{ T[ )d a (97)
x.i  x

where, assuming that pi = const, we have

[f" i (i)di ]  : i[(hxi i ) 2  (hxi+xi)2]
Xi

+ 2m.(hxi+i )) i]T 0 1 0 [ki] (98)

0 0 1

It follows that the desired expression has the form

xi 2 Pi[(hxi+i - (hxi+xi) 2

+ mi(hxi+i) cT[ T 0 1 0 [il]{c - trii]T 1 [i]

0 0 1460 0
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- 3{a }T 1i]T 0 1 [Zi ]{~ a (99)

0 0 1

11. The RAE/B Satellite. General Formulation.

a. Equations of motion

Next let us specialize the equations to the case of a satellite

consisting of a rigid core with six flexible booms, as shown in Fig. 6.

First, we wish to determine the matrices [Zi] of the direction cosines

between axes xiY zi and xyz. From Fig. 6, it is easy to verify that

ca sa 0 -ca sa 0'

[I] -sa ca 0 , [2] -s -c 0

0 0 1 0 0 1

-Ca -Sa 0 ca -Sa 0

[k3 =3 sc -ca 0 , [4]= sa Ca 0 (100)

0 0 1 0 0 1

0O s c1 f 0 -s -ca
[z5] = 1 0 0 , [ 6 ] = 1 0 0

0 c -sBJ 0 -c5 sgj

where sa = sin a, ca = cos a, sB = sin B, and c = cos B. Moreover, to

write the angular velocity matrix {w} in explicit form, we must specify

the rotations ej (j = 1,2,3). Assuming that system xyz is obtained from

system abc by means of the rotations e2 about y, -el about x, and 03

about z, and recalling that axes abc rotate about c with the constant

angular velocity Q, matrix {m} can be shown to have the expression
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-(so 2 ce3 + sol ce2 se3) Lc3 col se3  0  1
Ss02 se3 - so ce 2 ce 3  + se3 cOl co 3  0 2 (101)

cel c e2  0 sel 1 ie3

where seo = sin el , cel = cos el, etc. Because the direction of the

radius vector Rc coincides with that of axis a at all times, the direction

matrix {za } can be written as

ce2 ce3 - so1 se2 se3

= -(ce 2 s53 + se1 so2 ce3) (102)

ce1 se 2

It will prove convenient to rewrite matrices {w} and {a}) as follows

{} = [el3 [e*]1 {e + {e}3 + 0 [e]31]1{e 2 (103)

where

ce 3  s03 0 [ -1 0 0o 0

[.]3 -se3 cO3  0 [] 1 = 0 Cl l , 6}3 = 0

0 0 1 0 so 0

r (104)
1 0 0 -se2

[o] 1 = 0 c l  -sel {6} 2 = 0

L0 s l cel ce2

Introducing Eq. (103) into (4), and recalling Eq. (68), the kinetic energy

becomes
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T = {}T [j(O)] [w} + {}T {K} + TE

2 E1= { [e ]T []T [j(O )] 3 [( ° ]+ { 3 T T (0)

+ 6T [ (O)] {}3 + {e}T [e*]1 [e]T {KI + Ie K} + TE

+ T [e]T [e]T j(0)] [1 [*] { + T []T []T j()

+ 0 e)2 [1 ]T 3 {K} + +"22I T [3 0 e]3 (0 112
2 1 3 2 2 [1 3 [ [6]3 [ [

= - {}T [e*]T [j*] [0*] I {6} + {;}T[o*]T []T T 3

+ {f}T [o*]T {K*} +2 J33 2 + K3 3 + TE
1 2 33 3 33E

2 1 L]1 {e + f)2 [ell []3 [J] {6}3

T T [O2 ]T e)2 [Ol [J*] [e01 {e)2 (105)
+ 1 {K* + {8} [ {e15

where [J*] = [e]3 [j(O)] [03] and {K* = [e] {K}. Moreover, inserting

Eq. (103) into (5), and recognizing that {za} = - ({te})T [E]T 3

we obtain the gravitational potential energy in the form

VG 12 tr [J(0)] .2 ({e 'T e [e] 0)] [ [ell (-{6}2)
S ~ T2 tr[j(O)] T

Sr2 2 tr J(0)+ 2 ({e}j) [e] T [J*] [el {o}l (106)

where primes indicate differentiation with respect to 62. Expanding the

matrix involved in T and VG, and recalling that L = T - VG - VEA - VEB, the

Lagrangian L can be written in the form

L [Jll 2 + (J2 +J3 s21 + 23 SC) 2

S 11 1 22 12 . 33 1 23 selce )
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- 2 (J12C l + Jl3Sl )  12 - 2J13 013 + 33 3

+ 2 (J23col + J33sel) 0263 ]

, , , *, 1 6 [ .2 .2 .2
- K + (K2c + K3sel ) 2 + K3  3 (u i + vi + wi)dmi

+ fl * +' 2*
+ {(J 1se 2 + J12 Selce 2 - 13 ceOce2) 1  12 cel so 2

- J22 selcelce2 + J33 Selcelce 2 - J3 see 2 + 23 2 (c2 1

- s2el)]2 + (J33 ceOce 2  J13 S62 - J 3 selc 2 ) 3 - K1 s 2

- K2 s 1ece2 + K3 ce 2} + 92 1 (l + 22 + 33) + 1 (s262

S3c20 2) + 2 s2 1 (c2 2 - 3s202 ) + 4 J12 s 1Se 2 ce 2

+ J33 c261 (c202 - 3s2 2) - 4J13 clSe2 c02  J23 scel (3s2e2

- c2e2)] - 12 cPxi c2+ + Jdxi

A 61 0 Ez 2v 2 1-2 + 2. 1 +

c -1 L 2 ,w i x

- 5 j dxi (107)

To obtain Lagrange's equations for the rotational motion, we intro-

duce Eq. (107) into Eqs. (35), and obtain

[(J3 - 22 ) selcel + J23 (c 2e - s2)] 2 sel 3 Cel)°l2:
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+ (-J23 sl + 33 Cel )e 2 3 - (K sel - K3 ce l )e 2

, . S* 12 2
+ {J11 2 ce1ce2 + 3 selce2) 1 +J 2 selse 2 - 13 celse2

+ (J33 - J 2 2 )(c 2 el - s 2 el)ce2 - 4 J23 ce1 selce2 ]e2

- (J33 selce2 + J23 ce1ce2 )e3 - K2 ce1ce2 - K3 SOl ce2}

+ 2 [4 J2 cese2 ce 2 + (J22 - J33) selcel (c2 02 - 3s 2 e2)

+ 4 J13 Selse2Ce2 + J23 (c2,e - s2e1)(3s2 2 - c2e2)

d- ~ [1J (l12 cel + J13 sel)2 - 3 63 - K1

+ Q (J11 s2 + 12 selce2 - J13 ce1ce 2 )] = 0 (108a)

SJ c2 - 2 se2 + 3 celse2 ]el + I-JE2 celce 2 + 22 sese2cl

- J33 celse 1se 2 - 13 S 1 ce 2 - J23 se2 (c2e - s2e1)]2 " (J3 3 celse2

+ 13 ce2 - J23 se 1Se 2 )3 - K ce 2 +K2 selse2 - K celse 2 }

+ 2 [4 J1 se 2 ce 2 + 4 Jl2 se (c 2 e2 - s202) - 4 J22 S2 else 2ce2

- 4 J13 ce1 (c2e2 - s2e2) + 8 J3 Selcelse 2 ce 2 - 4 J33 c2 "lse2c 2]

d [J+ se
Z- [22 c2 01 3+ J3 +2 J23 selcel]e2 - (J12 cel + 1i3 sel)1

+ (J~3 cel + 33 sOe)3 + K2 cel + K* sol + [-Ji2 celse 2

- J2 Selcelce 2  J3 Se1se 2 +J3 (c2e1 - s2 1e)ce 2

+ 333 selcelce2]} = 0 (108b)
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- J* 2 2 1 3 selc)e + [(J32 - Jll)Cl + 23 el1]ele2+ l + KCe12

2+ .3 63 + 13 ce 1 e20 3 + K2 + K1 cel 2

+ n {[-2 J;2 se2 + (Jll - J22 ) SelCe 2 + J23 celce2 ]6 1

+ [( - J*1) cele 2 - 2J*2 se 1celce2 + J3 sele2

+ J 3 (c 2 el - s 2
1l)ce2 ]e 2 + (J2 3 se 2 - J3 elce 2 )6 3 + K2 s e 2

- KI selce 2  + 2 J2 (s202 - 3c 2 e2 ) + 4(Jl - J2 2 )selse2ce 2

+ Jl2 S2 l1 (c2e2 - 3s2 2) + 4J23 Celse2ce2

- J3 Selc el(c2 2 - 3s2 e2)] 13 el 3 cel + J33 Sl)e2

+ J33 3 + K3 + R (-J*3 s62 - J2*3 selce 2 + J3 celc02 )] = 0 (108c)

Considering Eq. (36) in conjunction with Eqs. (69), (99), (100),

and (102), and letting i = 1, we obtain the differential equation for vl

pl {(hxl + xl) [(wl ca + w2 sa)(wlsa - o2 ca) - 302 (kalca + Za2sa)(kalsa

- a2ca)] + (hyl + v1) [(1ca + w2sa)2 2 + 2(2(2 3l2 (alca

+ aa2 s )2 + a2) ] + (hzl + W1)[3(wilsa - m2ca) - 32 a3 (Yalsa

ka2ca)] + Wl (cal + sam2 )} - P1 [-(W + hzl)( lca + m2sa)

+ (hxl + Xl) 03 + v1l

- 02 {(csa - c2 ca) 2 + c32 + 2 - 3[(kalSa - a2cu )2
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+ ta2]} x [(hx1 1)2 -(hxl + xl) 2]+ ml (hx, + l)} vi

+ EIzl VV12 + [-EIz l v (- + yl= 0
ax1

0 < x1< 1 (109a)

which is subject to the boundary conditions

v1(0) = 0 , vi(O) = 0 (109b)

mI {(hxl + kI) [(w1ca + w2sa) (W1sa - w2ca ) - 3 02 (kalc a

+ la2sa) (ZalSa - za2ca)] + (hyl + v1) [(lCa + 2sa)2

S+ 22 _ 3 2 ((Lca + a2S) 2 + a3 ] + (hzl + w1) 3(15sa

- w2 ca) - 3 Q2 a3 (talSa - ka2ca )] + wl (Ctl1 + saw2)

-j [ -(Wl + hzl) (wlca + w2 sa) + (hxl + 2l) w3 + v11

- 02 (csa c- ca)2  kc3 + 2 - 3[(als - 2 2 (h

+ £1) vi + 5 EIz 2 v 122 1- 1I vv

+ ax- [EIz1 V ( - ~- ) 1 1

(109c)
EIi v (1 - x= O J

Similarly, the differential equation for wl is

p, {(hxl + Xl) [-w3 (wmca + w2 sa) + 3Q2 ka3(kalca + ka2sa)]

+ (hyl + V1) [w3 (w1sa - w2 ca) - 3 a2 a3 (kalsa - a2ca )]
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_(h 2 2 2 2 2 2
+ (hzl + W1) + ~2 + 22 - 3 al (al + a2) ]

- 1 ( 1c a + 2s ) }  at P1 [(hxl + x 1) (w1sa - w2 ca)

+ (hyl + v)(ca + w2sa) + w~- 1 Ka 2 I(sa - a2c2

+ 2 + 2 - 3[(alS - x a2]}  pl [(hx1 + e1)2+C3 +2-l a2ca) +a3 2 1 [(h +

-(hxl + x1 + m1(hxl + EL)1 wi + 5

a+ 5 [2)] + :Pz1 I = , O < 1 (lIOa)ax: -EIylWi (-

where w1 must satisfy the boundary conditions

W1(0) = 0 , wi(0) = 0 (110b)

mI {(hxl + Z1) [-m 3 (wlc + w2sa) + 3Q2 £a3 (kalca + ka2 s a) ]

+ (hyl + v1) [w3(, 1sa - w2ca) - 302 Za3 (al s  - ka2ca)]

+ (hz )  2 + 2 + 22 _ 32 ( 2 + z a 2 )
z 1 + l) .I 2 al a2

- v (wlCa + w2 sa) - at (hxl + l) (wlsa - w2ca) + (hyI + v1 ) (l1ca

w2 sa) + w1 2 (clsa - c2)+ c32 + 2 - 3[(alS

- a2cc)2 + a3]> (hxl + l)W I + 2 EIy I WW1
2

+ a [Eyl w" (1 - W-5 2 )] 0
3x1 yl 1 x 1 x1 = 0

EIwyl' (1 - 5 wl2)x = 1= 0
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In the above

1 = - 2(se 2 ce3 + selce2 se 3 ) - ce 3 l + celse3 2

w2 = n(se 2 se3 - selce2ce 3 ) + se3l1 + celce3 62  (111a)

w3 = Qcelce 2 + sele 2 + 63

kal = ce 2 c e3 - se 1se 2 se 3

Xa2 = -(ce 2se3 + selse 2ce3 ) (111b)

2a3 = celse2

9c1 = -(se 2 ce 3 + selce2se 3 )

Xc2 = se 2 se3 - selce2 ce 3  (111c)

Zc3 = C81ce2

The equations of motion and boundary conditions associated with the booms

2, 3, and 4 are obtained from Eqs. (109) and (110) by replacing a by

f-a, W+a, and 2f-a, respectively, and, of course, changing the sub-

scripts of v1 , and wl accordingly.

Following the same procedure as that used to obtain Eqs. (109)

and (110), the equation of motion and boundary conditions for v5 are

P5 {(hx5 + x5 ) [-wl(w 2 sa + w3cB ) + 302Pal(ka2SB + a3cB)]

+ (h + 2 + 2P2 3D2  e2 +
+ (by5 + v5 ) 2  3 + 2 32 a a32)] + (hz5 + W5 )[W1 (w3s5
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- w2 c8) - 32 £al (£a3SB - a2 cB)] + (w3 cB + w2sB)w5

at P5 [(hx5 + x5)( 2c - w3s) - (hz5 + w5)(w2sB + m3 cB) + V5]

ax5 \ c c2c - kc3s) + 2 - 3[a 2 a2C- a3S )2]} xxspcl + (£c2cB +c3Sg 2 2 -31a

2 P5 [(hx5 
+  5 ) 2 - (hx5 + x5)2 vJ + 5- EIz 5 v5v 2

2

2 Iz5 v (1 - v5 ) + = 0 0 < x5 <5 (112a)

5

v5 (0) = 0 , v5(O) = 0 (112b)

EIz5 5 2 + - [EIz5 v (1 52) x5 5 = 0SEz5 v5 ax5 Lz5 5 5 v

EI 5 v (1 - 2) 5 =(112c)

and those for w5 are

P5 {(hx5 + x5) [(w3sB - w2cS)(2s + w3c8) - 3Q2 (a3SB - ka2cB)(a2SB

+ Ya3C)] - (hy5 + v5)[w l (w2 c  - 3sB) - 3o2 kal (ka2cB - a3Sa)

+ (hz5 + w5  +(w2s + w3c2+ 22 - 32 3D [al + (a2a

+ za3c8)2] - G5 (w2sO + w3cB)}

-T 5 [-(hx5 + x5)" l t (hy 5 + v5 )(" 3 cB + w2 s B)]

x5  (5 5 (hx5 + x5)2 5c+ £ E 3CJal a3

2 [(hx5 + k5)2 -(hx 5 + x5 )2 ] } + 5 EIy 5 WW
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2

+2 [-Ely 5w ( - w 2 )] + z5= 0 0 < x5 <5 (113a)
5

w5 (O) = 0 ,w(0) = 0 (113b)

5 Ely 5 ww. 2 + [ElywS (1 -w52)]5 5 = 0

(113c)

El w" (l - 5 wg2) 0
y5 5 2 x5 = k5

The equations for boom 6 are obtained from Eqs. (112) and (113) by an

appropriate change in subscript, and by replacing B by 7+B.

b. Perturbation solution of the equilibrium problem.

The first problem in attempting a solution of the equations of

motion, Eqs. (108), (109), (112), and (113), is to identify the equilibrium

configurations. To this end, we must let all the velocities and accelera-

tions equal to zero in these equations. This leaves us three transcendental

equations for the rotations ej (j = 1,2,3) and twelve nonlinear differential

equations for the elastic displacements vi, wi (i - 1,2,...,6).

We shall consider the solution of the nonlinear equilibrium problem

in the form

Vio(xi) = ViOO(xi) + viol0 (xi)' Wi(xi) = Wi00 (xi) + wi01 (xi)'

i = 1,2,...,6 (114)

where the third subscripts on the right side of Eqs. (114) indicate the

solution of the linearized problem if the subscript is zero and relatively
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small perturbations if the subscript is one. It follows that the inertia

matrix of the deformed body can be written as

[j(O)] = [J(0)]0 + [J(O) ] 6 6 T
0 (1 Le 1 0il + z 0 . il l 13 1 i3 (115)

i=0 i=l

where [J(0)]0 is the inertia matrix as if the body was entirely rigid, in

which

J0110 = AO' J0220 = BO' J0330 = CO
(116)

0120 0210 0130 = J0310 = J0230 0= 320 = 0

are the moments of inertia of the rigid hub, and

( 2 2 2 2
ill0 = 0 pi (h2 +h i)dxi+mi (hyi+hzi)

Ji220 pi(hxi+i) 2+h2 ]dx +m(hxi+) 2+h2i

i220 ) +zi I hx

S2 2o
Ji330 Pi [(hxi+xi) 2+h2 ]dx.+mi[(h xi+i)2+h
i330 yi 1 1 xi Li)hy

i = 1,2,...,6 (117)

i20 i210 0-I pi(hxi+Xi)hyidxi-m i (hxi+)hyiJi120 = i210 = J0h i

i130 =  i310 = - pi(hxi+Xi)hzidx i-mi(hxi+zi)hzi

Ji230 = i320 = Pi hyi hzidxi -mihyihzi

are the moments of inertia of the appendages when in undeformed state,

expressed in terms of local coordinates. Moreover, [J(O)]l is the change
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in the inertia matrix due to first order elastic displacements, which has

the elements

Jilll i p(2hyi +v2 +2hw +w )dxi0 Pi(2hyii 0oio zi 100 10 i

2 2j
+ mi(2hyivi00+v 00+2hziwi00io0 xi 1i

22 OPi(2hzi ioo+io o)dx +mi(2hziiOo+iO xi = i

Ji331 0pi(2hyiviOo+voo)dxi+mi(2hyiviOo+v 00 i i

il21 i211 = ipi(hxi+i)Vioodxi - mi(hxi+xi)vio00 X = Li

il31 = Ji3ll = -f Pi(hxi+xi)ioodx i - mi(h+xi )wio 0 i = i

i231 = Ji321 = - Pi(hyiw 00+hziV 00+Vi00Wi00)dxi

-mi(hyi wi 00+hzivio+00 iooio00 )xi = i

i = 1,2,...,6 (118)

To linearize the algebraic equations for the angles ej (j = 1,2,3)

we would have to assume that the angles are small. This, however, is not

always true for an arbitrary satellite, so that linearization cannot be

justified. Fortunately, it is not difficult to solve the nonlinear

algebraic equations for the angles oj (j = 1,2,3) by means of Newton-

Raphson method for the moments of inertia given. As a first iteration,
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we insert the moments of inertia of the satellite regarded as rigid into

the tree transcendental equations for ej (j = 1,2,3), and obtain some

preliminary values for these angles. Hence, letting all terms in Eqs.

(108) involving time derivatives equal to zero, we obtain

4J120ceIse 2c 2  220 - J330)se1cl (c2 1 - 3s 2
2 ) + 4Jl30se1se2ce2

+ J23 0 (c2o1 - s21e)(3s2e2 - c2 e1 ) = 0 (119a)

* * *52 2 2
4J 1 10 se 2 ce 2 + 4J0 2 0 sel(c 2 e2 - s262 ) - 4J220s Ols 2cO2 - 4J 13 0cl(c 02

s2e 2 ) + 8J230soecelse 2ce2 - 4J 33 0c'else2 ce 2 = 0 (119b)

-20 (  2 - 3c2 2) + 4(10 - J220)Selse2c 2  20s (c2o2 - 3s2 2)

+ 4J230ce se2ce2 - J1 30 selcal(c2 2 - 3s2 e2 ) = 0 (119c)

where [J*] = []3T [J [o]3 in which [0]3 is given by the first of

Eqs. (104). Regarding the angles ej (j = 1,2,3) as known constants, we

can linearize Eqs. (109), (110), (112), and (113) with respect to vi, wi
and their derivatives, and solve for the perturbed elastic displacements.

Hence, inserting Eqs. (114) into (109), we obtain the equations for v100

in the form

p1 {(hxl + x1) [( 10Oca + w2 0sa)(lo0sa - w20ca) - 3o2 (al0 c

+ Pa20sa)(iala -2a20ca)] + (hy1 + v100 ) [(wlocC + w20sa) 2 + w20

+ 22 - 3 2 (alOc + a20sa)2+ a30) + (hzl + W100 )[030(10 sa
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- w20ca) - 32 £a30(a0sa - za20ca)]} - vl'00 P1 (hxl

+ x1) 2 (clOSa - c2 0 ca) + "c30 + 2 - 3[(kalOSa - ka20ca) 2

+ kaO] } + v 0 0 p2 l pl [(h +  l)2 - (hxl + xl)2]3 2 2

+ ml(hxl + 1)} {(ZclS0S - ac2 0ca) 2 + £c30 + 2 - 3[(zalOsa

-a20ca) 2 + a0]} - EI v00 (120a)

where v100 is subject to the boundary conditions

v100 (0) = 0 , V10 0 (0) = 0 (120b)

ml {(hxl + I ) 1(0 c a + w2 0 sa)(wlOsa - w2 0 ca) - 3 a2 (alOca

+ £a20sa)(al0sa - ka2 0ca)] + (hyl + v100)[(w10 cC + w20sa)2

+ +20 +22 - 302(tal0ca + a20sa)2 + a 0) + (hl

+ w100 ) [w30 ( 10sa - w2 0 ca) - 32 ka30(kal0sa - ka20ca)]

- V o0 0  2 (hx1 + i) (KclOsa -ac20ca) 2 + 30 + 2 - 3[(2alOS

- +a20 ca)+ a3o) 1+ El 1 = 0

(120c)

El" = 0
E 100 1Xl =

The quantities wjO, ajO and acjO (j = 1,2,3) appearing in Eqs. (120) are to

be calculated by using ej (j = 1,2,3) as given by Eqs. (119). Note that
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now primes designate total derivatives with respect to x1 because v100

depends on x alone and not on t. Similarly, for w100 we have

P1 {(hxl + xl)[-w 30(wO1 ca + w20sa) + 302ka30(zalOca + a20 sa)]

+ (hyl + v100 ) 1[30(lOsa - m20ca) - 3029a30(9alOsa - za20ca)]

2 2
+ (hzi + 100) [C0 + w20) + 22 - 32( a0 la20)

- pI W100 (hxl + Xl) -2 {(clOS - c20ca2 + c30 + 2 - 3[(Cal0s

- 9a20ca)2 + 2a0]} + W'O 2 {1_ P1 [(hxl + ,1)2 - (hxl + xl)2]

+ ml(hxl + )1 (clSa - £c20a)2 + Zc30 + 2 - 3[(£alOsa

)a20Cc)2 + 0a30] - EIy 1 wlO 0 = 0 (121a)

where w100 is subject to the boundary conditions

wlo 0(O) = 0 , wl00(0) = 0 (121b)

m1 {(hx 1 + lI) [-w30 ( 10ca + w20sa) + 32a3(kalOca + ka2Osa)]

+ (hyI + v100 ) l[ 3 0 (lOsa - m20ca) - 302 a3 (alOsa - za20ca)]

2 2 2 _ 302 ( + 2
+ (hz1 + w100) [W10 W 20 2 + 20 2 a20 a20)

100 2 (hx1 + ki) ( (clOsa - c20ca)2 +  c30 + 2 - 3[(alOsa

a20c)2 + ~a20] } + El wI x = =0

(121c)

El wT'00 I = l = 0

62



The differential equations and boundary conditions for vi00 and Wi00
(i = 2,3,4) are obtained from Eqs. (120) and (121) by replacing the sub-

scripts of v100 and w100 by the appropriate ones and the angle a by 7r-a,

7+a, and 2r-a, respectively. On the other hand, the differential

equations and boundary conditions for v500 and w500 are obtained from

Eqs. (112) and (113) in the form

P5 {(hx5 + x5 ) [-10(w20SB + w30c) + 302alO(ia20s  + ka30cB )]

+(h + W2+2 _ 3 2 , 2 + 2

(hy5 )  20 + + 202- 302 (a20 +a30)]

+ (hz5 + W500 ) [W10(w30S - w20cO) - 302al0(a30sB - ka20CB)]}

-V5 0 0 P5 2 (hx5 + x5) {icaO + (Lc20c - ac30 sO )2

- 3[a20 + (la20c - La30S)2 500 02 { 5 [(hx5

+ k5)2 - (hx5 + x5)2 ]} 2  + (c20 c  - c30s) 2 + 2

- 3[Lao + (a20CB - £a30SB)2]} - EIz5 v500 = 0 (122a)

where v500 satisfies the boundary conditions

v500 (0) = 0 ,v500(0) = 0 (122b)

EI 5 v 0  = 0 , EIz 5 v 00  = 0 (122c)

x5 = 5 x5 5

as well as

p5 {(hx5 + x5) [(w30 sa - w20ca)(w 20s +- w30c) - 3P2( a30S
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-a20CB)(a2OSB + £a30CB)] - (hy5 + v50O ) [ 10 (w20 c - w30sB)

- 302£a1O(a20C6 - ka30 sB ) + (hz5+ 500) + (20 + 230cB )2

+ 22 - 32 [a 0 a20 s +  a30 c )2] } - W500 p5 2 (hx5

+ x5) cl0 + (c20ca - kc30 a)2  + (2 3[ 0  a20CB - £a30s )2]}

+ w00 2 { P5 [(hx 5 + z5)2 - (hx5 + x5)2] 2 c 0  (20C

-c30SO)2 + 2 - 3[a 0 + (a2OC - a3Os)2]} -EIz5 w5 0 0 = 0 (123a)

w50 (0) = 0 , Woo0 (0) = 0 (123b)

EI w 0  = 0 El w"00  = 0 (123c)
5 5  5 x5  5

The differential equations and boundary conditions for v600 and w600 are

obtained by replacing in Eqs. (122) and (123) v500 and w500 by v600 and

w600 and a by f+ , respectively.

On the other hand, the boundary-value problem for the perturbation

v10 1 is defined by the differential equation

plv10 1 {(AO0
ca + w20 s )2 + w30 + 2 2 - 3 2 [(alOca + a20 s )2 + a3011]}

+ p1W 10 1 [w30(61OSa - w2 0 ca) - 3o2ka30(kalOsa - ka20Ca)]

+ v0l (hx1+ X1) (( cl0sa - c20ca) + c30 + 2
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and that for the perturbation w101 by

p1V10 1 [w30 (wlOsa - w20ca) - 3o2 a30(ialOSa - a20ca)]

+ plW 101  [2O + 20 + 2 2 - 3 2 (aO +  a20 )]

+ Wi01 - 2 (hx + x1) (kclosa - kc20ca) + kc + 2

- 3[(za1sa - ka20ca)2 + a0 + Ely1 [10 w.oow0

+ 5 w 0wo] + W 01 {2 1~ [(hxl 1)2 - (hxl + x1)2]

+ ml(hxl+ 1 ( cI0 sa -(c20Ca) + kc20 + 2 - 3[(alOsa

- a20c) a0]> + EI1  1 w 0  + 10 W00 W"o00

+ Elylwl 01 (10 Wi00W 00)

- El 01 [ (W )2] - E 3 + 10 Wi00 0OOW 0 o

+ w 0 00) 2] (125a)

W101(0) = 0 , wl01 (0) = 0 (125b)

mlvv101 [ 30(wO1 sa - w20ca) - 3 2a30(kalOSa - a20ca)]

+ mlw101 [mE2+ m20 + 2 2 - 3+2 (a20 +a20)]

+ W {ms2 (hxl + 1)  (tclO ~ 2ca) + c3Q + 2 - 3[(k alOs

Sa20ca)2 a30+ , 5 EYl [2w 00wow, 0 + (W,00 )2]
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- Ey 1 W 01 (5wo00w 00 )

+ ElyI wi1 [1 - (w 00 2] Ely I  (wi 0 ) w o 0

+ 2w 00 (W oo00 )2 ]

(125c)
- Ely I [(l - 5 (wi) 2 ] Wi,(125ol

- 5w 00w 00w 01 = - 5 Ely1 0o)2 w1 00  
5 = k5

with companion equations for Vio I and Wio0 (i = 2,3,4). In a like manner

2 2 + 2n2 3o~fz 2 k 2
P5V501 W20 0 3 + 22 - 32 (a20 + a30)

+ P5W501 [w1 0 (w3 0 s - 20cB) - 302 a10(a3OSB - ka20CB)]

+ Vo01 - 2 (hx + 5 k c + (yc20c - £c3oS) 2 + 2

-3[£a0 + (a20ca - ka3OSa) 2 ] + EIz 5 [10 00 0 + 5 v""00

+ v 01  
2  P5 [(hx5 + )2 - (hx5 + x5)2 c (k c20c

- c30SB)2 + 2- 3[,a2O + (a20CB - a30s) 2]) + EIz 5 [ - (v5 0 )2

+ 10 v5 0 0 v500]1 + EIz5 v 01 (10 v500 00)

- EIz5 v501 [ - (V 00 2] = - EIz5 [ (v 0)3

+ 10 v50000v 0 + v 0 (vo 00)2  (126a)

501(0) = 0 , Vo01 (0) = 0 (126b)
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EIz 5 {- [2 v 00 v 0,, + (vg00)2 v1 - 5 v "00 OOv01

+ [1 - (v00oo)2] v'b

5 EIz5 [(Vo00)2 V00' + 2 v0o0 (V,00)2]

EI5 {(1 - (v5 0 )] v 01  at x5 =5 (126c)- Elz5 2I -0

- 5 v500500501} = - 2 EIz5 (Vo00 500

and

p5 v501 [iO(2 0CB - m30S ) - 392a10(a2OCO - Za30SB)]

+ 5W50 1  
+ (20 + w30c )2 + 202 - 3Q 2 [a0 + (Pa20s

+ a30c)2]) + W 0l - p5 2 (hx5 + x5 ) c20 +  c20c

- kc30sB) 2 + 2 - 3[oa% + (ka20C - Za30sW )2]

+ EIy 5 [10 w500w500 + 5 W oW5o00~

+ W 0 1 {12 P 5 [(hx5 + Z5)2 - (hx5 + x 5 X2 c20 + (c20c

c30S) 2 + 2 - 3[a20 +(%a20c - La30s) 2]>  EIly5  ( 00 )2

+ 10 w 00W',00 ]} + EIy5 w501 (10 w;00w500 )

-Ely 5 W5 0 1 1 - 5 (w500 )2] = - Ely 5  (w 00 )3

y 0w 1  5 l2 5!

+ 10 w500w500w0 + w"500 (w500 )2] (127a)

W501(0) =0 , o01(O) = 0 (127b)
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Ely5 {- [2 w500w 0 + (w500 )2] W501 - 5 wo0000"501

+ [1 - (w5oo)2 w1,

- Ely 5 [(w500 )2 w 500 + 2 w500 (w500)2]

- Ely 5 {[(1 (w00 01. at 5  5 (127c)

- 5 w500w00 501} = - Ely 5 (w00
2 W 00

It should be pointed out that this particular perturbation scheme

enables us to solve first Eqs. (119) for the first approximation rotations

ej00 (j = 1,2,3) independently of the elastic displacements. The rotations

are then introduced into Eqs. (120) - (123), yielding the first approxi-

mation for the elastic displacements vi00 and Wi00 (i = 1,2,...,6)

independently of one another. Inserting the first approximation vio00

and Wi00 into Eqs. (124) - (127), we can obtain the corrections Vi01 and

WiOl to the elastic displacements. The sums of these solutions yield vi0
and Wio (i = 1,2,...,6) according to Eqs. (114). Then, inserting vio and

Wio (i = 1,2,...,6) back into Eqs. (119), we obtain the angles ej0

(j = 1,2,3). In the vast majority of cases, this approximation is suf-

ficient. If not, having the new angles, we can iterate once more to

improve the elastic displacements vi0 and Wi0, as well as the angles ej0.

c. Liapunov stability analysis and the eigenvalue problem.

The values ej0, Vi0 , and wi0 obtained above, together with sets

of admissible functions Oj(xi) and *j(xi), are subsequently introduced

into Eqs. (49), (51), and (53), to obtain the coefficients mjk, fjk and
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kjk. The coefficients mjk and kjk yield the symmetric matrices [m] and

[k], whereas using Eq. (57) the coefficients fjk yield the skew symmetric

matrix [g].

From Sec. 6, if [k] represents a positive definite matrix, then

the nontrivial equilibrium is asympototically stable. On the other hand,

to obtain the natural frequencies, we must solve the eigenvalue problem

in the form (66). However, before the nontrivial equilibrium can be

determined, the system stability tested, and the natural frequencies cal-

culated, it is desirable to use specific values for the system parameters.

This is done in the next section.

d. The shortening of the projections effect

As indicated in Sec. 2, the booms are assumed to be inextensional,

so that there is no longitudinal vibration. However, because of the

transverse displacements, there is a shortening of the projection on the

nominal axis of any element of length of the boom. In fact, from

Eq. (14), the change in length of projection of any element of length dxi

du. = i + Jdx , i = 1,2,...,6 (128)
1 2 ax, axi (

We shall treat this shortening as a perturbation of the spatial

coordinate xi , so that we can write

xi = Xi + x , 0 < x i = 1,2,...,6 (129)

where xi0 are the original spatial coordinates and xil are the
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perturbations. From Eqs. (128), however, we conclude that the shortening

is a second-order effect. Hence, it will not affect Eqs. (120) - (123)

except that xi are to be regarded in these equations as xio (i = 1,2,...,6).

This enables us to solve for vi00 and Wi00 and write the shortening of

the projections in the form

xi0 1 xi0 [ 1'00 2 wi00 1x = J du - + 2 0 J a,

i = 1,2,...,6 (130)

where i is a dummy variable. On the other hand, the perturbation equa-

tions, Eqs. (124) - (127), must be modified to account for the shortening

effect. For example, the boundary-value problem for Vi01 becomes

plv101 {(l0ca + w2 0 sa)2+ 230 + 2I 2 - 3 )- 0 o+ a20 a301)

+ plw 10 1 lw3 0 ( 1 0 sa - w2 0 Ca) a 3 2 a30 (,alOsa - ja20ca)]

+ Vi 0 1 {- p1 2 (hxl + x10) c((l0sa - kc20ca) + ac O + 2

-3(al0sa - 20c) 2 + 9o,20+ EIz 1 (10 vIoovb + 5 v""v

+Vi' 0 1 {02 ( P1 [(hx1  102 - (h + x10 )2  + ml(hxl

15 )2 2 )2 + t 2
+ 910 ((clsa - c20c + 30 + 2 - 3[(al10sa - a20ca)2 a30

+ EIz 1 l (v( 0)2 + 10 v0oovl0]} + EIz 1 v 01 (10 vl00v'00)

lv 1 (v00) 2]} EIz1 02 + 10 viOOVOVi'b0

+5 ,,,,0 (V0)2] + 1 P1 [(wlOca + m20s()(wlOsa - w20ca)
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- 3 2 ( al0ca + a20sa)( al0sa - a20ca) fX10 V 00

1; 
v00 

12
+ W1 2 de1  0 < x10 - 10 (131)

subject to boundary conditions (125b) and (125c), where in the latter

£1 must be replaced by the shortened length £10'

12. The RAE/B Satellite. Numerical Results.

The general formulation of Sec. 11 has been used to obtain the

nontrivial equilibrium configuration of the RAE/B satellite, to test the

stability of equilibrium, and to calculate the natural frequencies of

oscillation about the nontrivial equilibrium. The system parameters are

as follows:

A0 = 87.74 slug ft2 , BO = 83.74 slug ft2, CO 
= 18 slug ft2

Pl = P2 = P3 = P4 = 4.348 x 10-4 slug ft-l P5 = P6 = 4.596

x 10-4 slug ft-l

ml = m2 = m3 = m4 = 2.40 x 10- 3 slug, m5 = m6 
= 0

21 = k2 = k3 = £4 = 600 ft, £5 = 26 = 315 ft

EIyl = EIzl = EIy2 = ... = EIz4 = 15.278 Ib ft2 , a = 300

Ely 5 = EIz5 = Ely 6 = EIz 6 = 13.889 lb ft2, a = 250

hxl = hx4 = 0.973 ft, hx2 = hx3 = 0.878 ft, hx5 = hx6 = 0

hyl = -hy4 = 0.705 ft, hy2 = -hy3 = -0.760 ft, hy5 = hy6 = -1.800'ft

hz1 = hz2 = hz3 = hz4 = hz5 = hz6 = 0

= 4.653 x 10- 4 rad sec -I

We shall present the results of the analyses in the order listed above.
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a. Nontrivial equilibrium

Inserting the above data into Eqs. (116) and (117), as indicated

in Eq. (115), and solving Eqs. (119), we obtain

6100 = 0.13537 rad = 7.756 deg.

e200 = -5.63789 x 10- 8 rad = -3.2302 x 10-6 deg.

e300 = 1.37374 x 10-6 rad = 7.87096 x 10-5 deg.

We note that 610 0 is caused largely by the damper booms. The fact that

the rods are not attached at the satellite mass center turns out to have

an insignificant effect on ejO0 (j = 1,2,3).

To evaluate the elastic displacements vi00(xi) and Wioo(xi)

(i = 1,2,...,6). We assume the solution of Eqs. (120) - (123) in the form

p
Vioo(xi ) = ari0 r(xi)r=l

i = 1,2,... ,6 (132)

Wi00 (xi) = r brio0r(i)
r=l

where

4r(xi) = Ar[(cos Brki + cosh Brki)(sin Brxi - sinh Brxi)

- (sin Bri + sinh Brii)(cos rxi - cosh Brxi)] (133)

are eigenfunctions corresponding to a bar in bending with the end xi = 0

fixed and having a mass mi attached at the end xi = i. The eigenvalues

Bri are solutions of the characteristic equation
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(1 + cos 8ri cosh Bri) = ri - (sin i cosh i

- cos Brki sinh Bri) (134)

Moreover, the amplitudes Ar are such that the eigenfunctions r(xi) are

orthonormal, i.e., they satisfy the relation

i i Pr(xi) s(xi)dxi + mi r(i)s(i)= 6rs (135)

where 6rs is the Kronecher delta. Limiting the series in (132) to two

terms, p = 2, the first two roots of Eq. (134) and the amplitudes Ar

corresponding to i - 1,2,3,4 are

B1 i = 1.85813 Al = 0.47696 slug-1 / 2

(136)-1/2
B2 i = 4.65310 A2 = 0.03789 slug

In addition, the coefficients ari O , bri0 (i = 1,2,3,4) are

Table I.

i aliO a210  blio b210

1 -0.13656 x 102 -0.98055 x 10-1 0.55184 0.46385 x 10-2

2 0.13652 x 102 0.97981 x 10-1 0.55188 0.46385 x 10- 2

3 -0.13652 x 102 -0.97980 x 10-1 -0.55187 -0.46384 x 10-2

4 0.13656 x 102 0.98054 x 10-1 -0.55184 -0.46385 x 10- 2

The first two roots of Eq. (134) with mi = 0, and the amplitudes Al and

A2 corresponding to i = 5,6 are
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1 li = 1.87511 Al = 0.63510 slug-1/2

(137)

B2ki = 4.69414 A2 = 0.04899 slug 1/2

whereas the coefficients ari and bri are

Table II

SaliO a2i blio b2io

5 -0.93855 x 10-2 -0.12900 x 10- 3  0.17756. 0.70688 x 10- 3

6 -0.93840 x 10-2 -0.12900 x 10-3  0.17756 0.70688 x 10-3

It will prove of interest to list the elastic displacements of the end

points, as calculated by means of the linearized equations. These dis-

placements are

V100(01 ) = -52.205 ft, w1 0 0 (l 1) = 2.1071 ft,

v200(2 2) = 52.192 ft, w200 (12) = 2.1072 ft,

v300( 3 ) = -52.191 ft, w300(Z3) = -2.1072 ft,

v400(4) = 52.204 ft, w400( 4 ) = -2.1071 ft,

v500 (') = - 4.8655 x 10-2 ft, w500 (Z5 ) = 0.92961 ft,

v600( 6) = -4.8648 x 10-2 ft, w600(k6) = 0.92960 ft

The above values of vi0o(xi) and Wi00 (xi) (i = 1,2,...,6) enable

us to solve Eqs. (119) for the angles ej0 (j = 1,2,3) and Eq. (131) and

the companion ones for the perturbations vio01(xi), wil0 (xi) (i = 1,2,...,6).

The resulting angles are
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10 = 0.19695 rad = 11.2846 deg.

020 = -6.54250 x 10-8 rad = -3.74858 x 10-6 deg.

e30 = 1.37608 x 10-6 rad = 7.88438 x 10-5 deg.

Instead of listing the perturbations vio0 and Wi01, we shall list the

complete solutions vi0 and wio0 in the form of the series

2
vio(xi) z= ari r(xi)

r=l

i = 1,2,...,6 (138)

2
Wio(xi) = z bri r(xi )

r=l

where Ori(xi) are still given by Eqs. (133), in which the eigenvalues

Bri and amplitudes Ar (r = 1,2) are given by (136) and (137). The final

results are tabulated as follows

Table III

i ali a2i bli b2i

1 -0.13803 x 102 -0.86379 x 10-1 0.54865 0.46378 x 10-2

2 0.13800 x 102 0.86313 x 10-1 0.54869 0.46378 x 10-2

3 -0.13800 x 102 -0.86313 x 10-1 -0.54869 -0.46378 x 10-2

4 0.13803 x 102 0.86379 x 10-1 -0.54865 -0.46378 x 10-2

5 -0.93855 x 10-2 -0.12900 x 10- 3  0.17756 0.70670 x 10-3

6 -0.93840 x 10-2 -0.12900 x 10-3  0.17756 0.70670 x 10-3
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Moreover, the final end displacements are

v10 ( 1 ) = -52.816 ft, w10( 1 ) = 2.0948 ft,

v20( 2) = 52.803 ft, w20(k2 ) = 2.0950 ft,

v30(93) = -52.803 ft, w30(z3) = -2.0950 ft,

v40(z4) = 52.816 ft, w40(i4) = -2.0948 ft,

v50(k5) = - 4.8655 x 10-2 ft, w50(k5) = 0.92962 ft,

v60(6) = - 4.8648 x 10-2 ft, w60 6 ) = 0.92962 ft,

and we note that the nonlinear effect is virtually zero for booms 5 and 6.

The nontrivial equilibrium is depicted in Fig. 7, where only the radial

booms are shown because the displacements of the damper booms are in-

significant.

b. Liapunov stability analysis

A stability analysis using K, as given by Eq. (60), as a testing

function has been carried out. Essentially, the analysis reduced to

testing the matrix [k] for positive definiteness, where the elements of

[k] are given by Eqs. (53). The numerical values of the elements for

the particular configuration at hand are listed in the next subsection.

The matrix was found to be positive definite, so that the equilibrium is

asymptotically stable.

c. Eigenvalue problem

Using Eqs. (49), (51), (53), and (57), in conjunction with the

above data, we obtain the elements
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Table IV

3.42090 x 104  0 -6.31727 x 10- 3  4.78807 x 10-1 -7.67484 x 10

m -4.78845 x 101 -7.67515 x 10 4.78840 x 10-1 7.67512 x 10 -4.78808 x 10

7.67480 x 10 8.49246 x 10- 5  6.81765 x 10 -8.49247 x 10- 5  6.81765 x 10

0 1.12564 x 105 2.20835 x 104  3.44739 x 10 -1.57077 x 102

m2, j  3.44664 x 10 1.57032 x 102 3.44664 x 10 1.57032 x 102 3.44739 x 10

-1.57077 x 102 5.48304 x 10 -3.23228 x 10-1 -5.48305 x 10 3.23042 x 10-1

-6.31727 x 10-3 2.20835 x 104  1.31824 x 105 1.77103 x 102 0

m3 ,j 1.77064 x 102  0 1.77064 x 102  0 1.77130 x 102

0 -2.89735 x 10 -4.94522 x 10-1 2.89734 x 10 4.94522 x 10-1

4.78807 x 10-1 3.44739 x 10 1.77103 x 102 1 0

m4 ,j 0 0 0 0 0

0 0 0 0 0

-7.67484 x 10 -1.57707 x 102 0 0 1

m5 ,j 0 0 0 0 0

0 0 0 0 0



-4.78845 x 10-1 3.44664 x 10 1.77064 x 102 0 0

m6 ,j 1 0 0 O 0

0 0 0 0 0

-7.67515 x 10 1.57032 x 102 0 0 0

m7 ,j 0 1 0 0 0

0 0 0 0 0

4.78840 x 10-1 3.44664 x 10 1.77064 x 102 0 0

m8,j 0 0 1 0 0

0 0 0 0 0

7.67512 x 10 1.57032 x 102  0 0 0

m9 ,j 0 0 0 1 0

0 0 0 0 0

-4.78808 x 10-1 3.44739 x 10 1.77103 x 102 0 0

m O0 0 0 0 1

0 0 0 0 0



7.67480 x 10 -1.57077 x 102 0 0 0

m 1,j 0 0 0 0 0

1 0 0 0 0

8.49246 x 10-5  5.48304 x 10 -2.89735 x 10 0 0

ml2,j 0 0 0 0 0

0 1 0 0 0

6.81765 x 10 -3.23228 x 10-1 -4.94522 x 10-1 0 0

S m 3j 0 0 0 0 0

0 0 1 0 0

-8.49247 x 10-5  -5.48305 x 10 2.89734 x 10 0 0

m4, 0 0 0 0 0

0 0 0 1 0

6.81765 x 10 3.23042 x 10-1 4.94522 x 10-1 0 0

m15 ,j 0 0 0 0 0

0 0 0 0 1



Table V

0 6.59282 1.29341 6.74937 x 10-3  -3.36689 x 10-11

91,j 6.74965 x 10- 3  -3.36715 x 10-11 6.74958 x 10-3 3.36711 x 10-11 6.74931 x 10- 3

3.36689 x 10-11 5.09923 x 10-2 -6.36069 x 10-8  -5.09924 x 10-2 -6.36071 x 10-8

-6.59282 0 -4.23315 x 10-7  1.14630 x 10-2 2.64825 x 10- 3

92,j -1.14635 x 10-2 2.64836 x 10-3  1.14634 x 10-2 -2.64834 x 10-3 -1.14630 x 10-2

-2.64824 x 10- 3  -6.88069 x 10-8  -4.10887 x 10-2 0.88070 x 10-8 -4.10889 x 10-2

-1.29341 4.23315 x 10-7 0 -1.24289 x 10- 2  1.40029 x 10-2

93,j 1.24054 x 10-2  1.40035 x 10.2  -1.24053 x 10-2 -1.40034 x 10-2 1.24288 x 10-2

-1.40028 x 10- 2 -4.97588 x 10-4  2.17121 x 10-2 -4.97587 x 10- 4  2.17121 x 10- 2

-6.74937 x 10-3 -1.14630 x 10-2 1.24289 x 10-2 0 9.12262 x 10-5

94,j 0 0 0 0 0

0 0 0 0 0

3.36689 x 10-11 -2.64825 x 10-3  -1.40029 x 10-2 -9.12262 x 10-5 0

95,j 0 0 0 0 0

0 0 0 0 0



-6.74965 x 10- 3  1.14635 x 10-2  -1.24054 x 10-2  0 0

g6,j 0 9.12263 x 10- 5  0 0 0

0 0 0 0 0

3.36715 x 10-11 -2.64836 x 10- 3  -1.40035 x 10- 2 0 0

g7,j -9.12263 x 10-5  0 0 0 0

0 0 0 0 0

-6.74958 x 10- 3  -1.14634 x 10- 2  1.24053 x 102 0 0

-5
g8,j 0 0 0 -9.12258 x 10-  0

0 0 0 0 0

-3.36711 x 10-11 2.64834 x 10- 3  1.40034 x 10- 2  0 0

9, 0 0 9.12258 x 10- 5  0 0

0 0 0 0 0

-6.74931 x 10- 3  1.14630 x 10-2 -1.24288 x 10- 2  0 0

glOj 0 0 0 0 0

-9.12259 x 10-5 0 0 0 0



-3.36689 x 0- 11 2.64824 x 10- 3  1.40028 x 10- 2  0 0

gi9,j 0 0 0 0 9.12259 x 10- 5

0 0 0 0 0

-5.09923 x 10- 2  6.88069 x 10- 8  4.97588 x 10- 4  0 0

912,j 0 0 0 0 0

0 0 -7.49379 x 10- 4  0 0

6.36069 x 10- 8  4.10887 x 10-2 -2.17121 x 10- 2  0 0

913,j 0 0 0 0 0

0 7.49379 x 10- 4  0 0 0

5.09924 x 10- 2  -6.88070 x 10- 8  4.97587 x 10- 4  0 0

g14 ,j 0 0 0 0 0

0 0 0 0 7.49380 x 10- 4

6.36071 x 10- 8  4.10889 x 10- 2  -2.17121 x 10-2 0 0

g15 ,j 0 0 0 0 0

0 0 0 -7.49380 x 10- 4 0



Table VI

4.33117 x 10-3  0 -2.98546 x 10-9  5.43385 x 10-6 -1.53634 x 10-5

k, -5.43408 x 10-6 -1.53641 x 10-5  5.43405 x 10-6  1.53640 x 10-5  -5.43384 x 10-6

1.53634 x 10-5 -1.59271 x 10-11 -4.36481 x 10-6 1.592715 x 10-11 -4.36488 x 10-6

0 8.50947 x 10-2 1.66943 x 10-2 1.72626 x 10-5  -1.35856 x 10-4

k2,j 1.72556 x 10-5  1.35817 x 10-4  1.72558 x 10-5  1.35817 x 10-4  1.72628 x 10-5

-1.35856 x 10-4  -4.74228 x 10-5  -2.79445 x 10-7  4.74229 x 10-5  2.79513 x 10-7

-2.98546 x 10-9  1.66943 x 10-2 5.21464 x 10-2 6.59442 x 10-5  -6.66325 x 10-6

k3,j  6.59170 x 10-5  6.66133 x 10-6 6.59174 x 10-5  6.66134 x 10-6 6.59447 x 10-5

-6.66325 x lO-6 1.64685 x 10-5  -3.34538 x 10-7  -1.64684 x 10-5  3.34444 x 10-7

5.43385 x 10-6 1.72626 x 10-5  6.59442 x 10-5  3.49900 x 10-6 -3.60230 x 10-8

k4 ,j 0 0 0 0 0

0 0 0 0 0

-1.53634 x 10-5  -1.35856 x 10-4  -6.66325 x 10-6 -3.60230 x 10-8 4.02153 x 10-6

k5 ,j  0 0 0 0 0

0 0 0 0 0



-5.43408 x 10-6  1.72556 x 10- 5 6.59170 x 10- 5  0 0

-6 8
k6 , j  3.49896 x 10 3.60229 x 10 8  0 0 0

0 0 0 0 0

-1.53641 x 10-5  1.35817 x 10-4  6.66133 x 10-6  0 0

k 3.60229 x 10-8 4.02153 x 10-6 0 0 0k7,j

0 0 0 0 0

5.43405 x 10- 6  1.72558 x 10-5  6.59174 x 10-5  0 0

k8 0 0 3.49897 x 10-6 3.60230 x 10-8 0

0 0 0 0 0

1.53640 x 10-5  1.35817 x 10-4  6.66134 x 10-6 0 0

k 0 0 3.60230 x 10-8 4.02153 x 10- 6  0

0 0 0 0 0

-5.43384 x 10- 6 1.72628 x 10-5  6.59447 x 10- 5  0 0

-6
k 0 0 0 0 3.49900 x 10- 6

-3.60230 x 10-8 0 0 0 0



1.53634 x 10- 5  -1.35856 x 10- 4  -6.66325 x 106 0 0

kl,j 0 0 0 0 -3.60230 x 10- 8

664.02153 x 10 6  0 0 0 0

-1.59271 x 10- 1 1  -4.74228 x 10-5 1.64685 x 10- 5  0 0

kl2,j 0 0 0 0 0

0 3.71129 x 10-5  8.10039 x 10-13 0 0

-4.36481 x 10- 6 -2.79445 x 10- 7  -3.34538 x 10- 7  0 0

kl3,j 0 0 0 0 0

0 8.10039 x 10- 1 3  3.88946 x 10-6 0 0

1.59271 x 10-11 4.74229 x 10- 5  -1.64684 x 10- 5  0 0

kl4,j 0 0 0 0 0

0 0 0 3.71129 x 10 -8.10040 x 10 3

-4.36488 x 10 6  2.79513 x 10 3.34444 x 10 0 0

kl 5 ,j 0 0 0 0 0

0 0 0 -8.10040 x 1013 3.88945 x 10 6



Note that the elastic displacements were represented by one mode each.

Using the formulation of Section 7, we obtain the following natural

frequencies

Table VII

1.514583 x 10-2 -1.514583 x 10-2 9.554415 x 10-3

-9.554415 x 10-3 9.900792 x 10-3  -9.900792 x 10-3

6.143208 x 10-2 -6.143208 x 10-3  4.319115 x 10-3

-4.319115 x 10-3  2.020401 x 10-3  -2.020401 x 10-3

2.020401 x 10- 3  -2.020401 x 10-3  1.975175 x 10-3

rad sec-1 -1.975175 x 10-3  1.955743 x 10-3  -1.955743 x 10-3

1.871461 x 10-3  -1.871461 x 10-3  .1.856504 x 10-3

-1.856504 x 10-3  1.856504 x 10- 3  -1.856504 x 10-3

8.708815 x 10-4  -8.708815 x 10-4  6.155318 x 10-4

-6.155318 x 10-4  3.439481 x 10-4  -3.439481 x 10-4

d. Parametric study

The stability analysis was carried one step farther by varying the

angle a. It was found that the system was asymptotically stable for

a = 500, but became unstable for a = 510. The results can be easily

explained by the fact that in the absence of damper booms and for com-

pletely rigid radial booms the system becomes unstable around a = 450.

The gravitational and centrifugal effects tend to deform the flexible

booms in a manner that the moments of inertia about the local vertical and
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about an axis tangent to the orbit are the same for an angle a such that

500 < a < 510. It should be mentioned that instability in both cases can

be traced to angle e3 , which tends to become large when the moment of

inertia about the local vertical becomes larger than that about the axis

tangent to the orbit, as at this point the "least moment of inertia"

criterion is violated.

The same parametric study was undertaken with respect to the

natural frequencies. In terms of natural frequencies, instability occurs

when at least one natural frequency (we recall that in our case the natural

frequencies occur in pairs) reduces to zero. Here again the system be-

comes unstable for 50° < a < 510, thus corroborating the results obtained

by the Liapunov stability analysis.

13. Summary and Conclusions

Two new theories for studying the motion characteristics of a

rotating system with flexible parts about undeformed equilibrium have been

developed. The first is qualitative and the second quantitative.

Specifically, the first represents a stability theory and the second a

method for obtaining the system natural frequencies.

The stability theory is based on the Liapunov direct method and

makes use of modal analysis to represent elastic displacements. The

novelty of the formulation lies in the fact that for the first time a

nontrivial equilibrium is considered in conjunction with the Liapunov

direct method for a stability analysis of spinning flexible bodies capable

of large deformations.

The stability analysis can be divided into two major parts: the

evaluation of the nontrivial equilibrium and the stability analysis itself.
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When the body is capable of large deformations, nonlinear algebraic

and differential equations must be solved for the rotational and elastic

displacements, respectively, where these displacements define the

equilibrium configurations of the system. Because the problem is one of

stability about nontrivial equilibrium, it is necessary to expand the

Liapunov function about that equilibrium. Assuming small displacements

from equilibrium, the problem reduces to the evaluation of a Hessian

matrix at the nontrivial equilibrium and testing the matrix for sign

definiteness by means of Sylvester's criterion. It should be pointed out

that the size of the Hessian matrix depends on the number of eigenfunctions

used to represent the elastic displacements.

The method for obtaining the natural frequencies of the system

makes use of the variational equations about the nontrivial equilibrium.

Then the set of second-order differential equations is converted into a

set of twice the number of first-order differential equations. The

associated eigenvalue problem yields the system natural frequencies.

The two methods are quite general in scope, and can be used for

testing stability and calculating the natural frequencies of a large

variety of hybrid systems. As an application, the theory has been used to

test the stability of the RAE/B satellite. First, the nonlinear equations

have been solved for the nontrivial equilibrium configuration, and then

this configuration has been used to evaluate the associated Hessian

matrix. The satellite was found to be stable. Then one of the systems

parameters has been varied to predict at which point the equilibrium be-

comes unstable. The results are in line with the expectations. In

addition, the system natural frequencies for oscillation about the
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deformed equilibrium were calculated. The parametric study used in con-

junction with the Liapunov stability analysis was used to examine how the

frequencies are affected. The study resulted in the same instability

statement.
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